Leçon N°5:

Transformations associées à des réactions acido-basiques en solution aqueuse

Introduction

Dans les piscines olympiques, les bactéries sont éliminées par les ions hypochlorite ClO^- en ajoutant de l'eau de javel, tel que le pH de l'eau de piscine doit être compris entre 7,0 et 7,6.

Pour que l'eau de la piscine ne présente aucun danger pour les baigneurs, la concentration massique de chlore Cl dans l'eau ne doit pas dépasser $2mg.L^{-1}$.

I. Réaction d'autoprotolyse de l'eau

1. Activité 1

L'eau pure est un mauvais conducteur de l'électricité, donc elle contient une petite quantité des ions.

Mesurons le pH de l'eau pure, on trouve pH = 7 à $25^{\circ}C$. Ceci signifie que la concentration des ions oxonium H_3O^+ dans cette eau est de :

$$[H_3O^+] = 10^{-pH} = 10^{-7} mol. L^{-1}$$

D'où proviennent-ils ces ions?

- \succ Puisqu'il n'y a que des molécules d'eau H_2O dans une eau pure, ce sont ces molécules d'eau qui ont données naissance aux ions oxonium H_3O^+ .
- \nearrow Ceci est expliqué par le fait les molécules H_2O réagissent entre eux selon une réaction acido-basique.

2. Réaction d'autoprotolyse de l'eau

L'eau est un *ampholyte*, elle joue le rôle d'un *acide* et d'une *base*, il existe donc une réaction acido-basique entre l'acide H_2O et la base H_2O , selon l'équation :

$$2H_2O_{(l)} \Rightarrow H_3O_{(aq)}^+ + HO_{(aq)}^-$$

Cette réaction est appelée autoprotolyse de l'eau.

Remarque:

L'autoprotolyse de l'eau est une réaction acido-basique très $limitée: au \ll 1$

3. Produit ionique de l'eau

A la réaction d'autoprotolyse de l'eau, on associe une constante d'équilibre K_e appelée produit ionique de l'eau, tel que :

$$\boldsymbol{K_e} = [\boldsymbol{H_3O^+}]_{\acute{e}\boldsymbol{q}} \cdot [\boldsymbol{HO^-}]_{\acute{e}\boldsymbol{q}}$$

- K_e est indépendant de la nature des espèces dissoutes dans la solution, il ne dépend que de la température.
- A 25°C, pour toutes les solutions aqueuses : $K_e = 10^{-14}$
- Généralement en chimie, pour toute constante d'équilibre X, on associe une autre constante notée pX, tel que : pX = -log X.

Ici on a alors:

$$pK_e = -log K_e = 14$$

4. Echelle de pH

- Une solution est dite *acide*, si elle contient plus d'ion oxonium H_3O^+ que des ions hydroxyde HO^- , c-à-d:

$$[H_3 O^+] > [H O^-]$$

Alors:

$$[H_3O^+].[H_3O^+] > [HO^-].[H_3O^+]$$

Donc:

$$[H_3 O^+]^2 > K_{\rho}$$

D'où:

$$log[H_3O^+]^2 > logK_e$$

Alors:

$$-2 \log[H_3 O^+] < -\log K_e \Rightarrow 2pH < pK_e$$

Finalement:

$$pH < \frac{pK_e}{2} = 7$$

Donc à 25°C, pour une *solution acide* :

De même, on trouve:

- Pour une *solution neutre* :

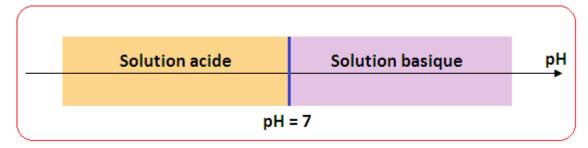
$$[H_3O^+] = [HO^-]$$

Donc:

$$pH = \frac{pK_e}{2}$$

D'où:

$$pH = 7$$


- Pour une solution basique:

$$[H_3O^+] < [HO^-]$$

Donc:

$$pH > \frac{pK_e}{2}$$

D'où:

II. Constante d'acidité K_A d'un couple acide/base

1. Définition

Un acide AH réagit avec l'eau H_2O selon l'équation suivante :

$$HA_{(aq)} + H_2O_{(l)} \rightleftharpoons A_{(aq)}^- + H_3O_{(aq)}^+$$

On appelle la constante d'équilibre associée à cette réaction, constante d'acidité du couple HA/A^- , elle se note K_A , tel que :

$$K_A = \frac{[A^-]_{\acute{e}q} \cdot [H_3 O^+]_{\acute{e}q}}{[HA]_{\acute{e}q}}$$

- La constante d'acidité est une grandeur sans unité, et elle ne dépend que de la température.
- On utilise aussi la constante pK_A , tel que :

$$pK_A = -log K_A$$

ç-à-d:

$$K_A = 10^{-pK_A}$$

2. Relation entre pH et pK_A

Pour tout couple acide / base HA/A^- , on a :

$$K_A = \frac{[A^-]_{\acute{e}q} \cdot [H_3 O^+]_{\acute{e}q}}{[HA]_{\acute{e}q}}$$

D'où:

$$pK_{A} = -\log K_{A}$$

$$pK_{A} = -\log K_{A}$$

$$pK_{A} = -\log \left(\frac{[A^{-}]_{\acute{e}q} \cdot [H_{3}O^{+}]_{\acute{e}q}}{[HA]_{\acute{e}q}}\right) = -(\log \frac{[A^{-}]_{\acute{e}q}}{[HA]_{\acute{e}q}} + \log [H_{3}O^{+}]_{\acute{e}q}) = -\log \frac{[A^{-}]_{\acute{e}q}}{[HA]_{\acute{e}q}} - \log [H_{3}O^{+}]_{\acute{e}q}$$

$$pK_{A} = pH - \log \frac{[A^{-}]_{\acute{e}q}}{[HA]_{\acute{e}q}}$$

Finalement:

$$pH = pK_A + log \frac{[A^-]_{\acute{e}q}}{[HA]_{\acute{e}g}}$$

De façon générale :

$$pH = pK_A + log \frac{[Base]_{\acute{e}q}}{[Acide]_{\acute{e}q}}$$

III. Comportement des acides et des bases dans une solution aqueuse

1. Comportement des acides dans une solution aqueuse

a. Activité 1

On considère deux solutions (S_1) et (S_2) d'acides HA_1 et HA_2 de même concentration $C = 1, 0.10^{-2} mol. L^{-1}$

- (S_I) : Solution d'acide éthanoïque $CH_3COOH_{(aq)}$, tel que : $pK_{A1} = 4, 8$.
- (S_2) : Solution d'acide méthanoïque $HCOOH_{(aq)}$, tel que : $pK_{A2} = 3$, 8.
- On mesure à 25°C, le pH des deux solutions, on trouve : $pH_1 = 3$, 4 et $pH_2 = 2$, 6.
- $^{\circ}$ Calculer le taux d'avancement final τ pour chaque solution, Quel est l'acide qui dissocie plus dans l'eau?

Le tableau d'avancement est :

L'équation de la réaction		$HA_{(aq)}$ -	$+$ $H_2O_{(l)}$	⇄	$A^{-}_{(aq)}$ +	$H_3O^+_{(aq)}$
L'état	L'avancement	Les quantités de matière en (mol)				
Initiale	0	C V			0	0
Intermédiaire	x	CV-x	En excès		х	х
Etat d'équilibre	$x_{ m \'eq}$	$CV-x_{ m \'eq}$			$x_{ m \'eq}$	$x_{cute{e}q}$

On a:

$$\tau = \frac{x_{\acute{e}q}}{x_{max}} = \frac{n_{\acute{e}q}(H_3O^+)}{CV} = \frac{[H_3O^+]_{\acute{e}q}V}{CV} = \frac{[H_3O^+]_{\acute{e}q}}{C} = \frac{10^{-pH}}{C}$$

A.N:

$$\begin{cases} \tau_1 = \frac{10^{-pH_1}}{C} = \frac{10^{-3.4}}{1,0.10^{-2}} = 0.04 = 4\% \\ \tau_2 = \frac{10^{-pH_2}}{C} = \frac{10^{-2.6}}{1,0.10^{-2}} = 0.25 = 25\% \end{cases}$$

L'acide méthanoïque $HCOOH_{(aq)}$ est plus dissocié dans l'eau que l'acide éthanoïque $CH_3COOH_{(aq)}$, car :

$$\tau_2 > \tau_1$$

b. Conclusion

Pour des solutions des acides de *même concentration* C, un acide est *plus dissocié* dans l'eau, ç-à-d son taux d'avancement final τ est *plus grand* (acide fort), quand :

- **pH** de la solution de cet acide est *faible*.
- La constante d'acidité K_A du couple mis en jeu est grande et donc le pK_A est faible.

2. Comportement des bases dans une solution aqueuse

a. Activité 2

On considère deux solutions (S_1) et (S_2) d'acides B_1 et B_2 de même concentration $C = 1, 0.10^{-2} mol. L^{-1}$

- (S_I) : Solution d'ammoniac $NH_{3(aq)}$, tel que : $pK_{A1} = 9, 2$.
- (S_2) : Solution de méthylammine $CH_3NH_{2(aa)}$, tel que $pK_{A2} = 10, 7$.
- On mesure à 25°C, le pH des deux solutions, on trouve : $pH_1 = 10$, 6 et $pH_2 = 11$, 4.
- $^{\circ}$ Calculer le taux d'avancement final τ pour chaque solution, Quel est la base qui dissocie plus dans l'eau?

Le tableau d'avancement est :

L'équation de la réaction		$B_{(aq)}$ +	$H_2O_{(l)} \rightleftharpoons$		$BH_{(aq)}^+$ +	$HO_{(aq)}^-$
L'état	L'avancement	Les quantités de matière en (mol)				
Initiale	0	C V			0	0
Intermédiaire	x	CV-x	En excès		x	х
Etat d'équilibre	$x_{ m \acute{e}q}$	$CV-x_{ m \acute{e}q}$			$x_{ m \'eq}$	$x_{ m \'eq}$

On a:

$$\tau = \frac{x_{\acute{e}q}}{x_{max}} = \frac{n_{\acute{e}q}(HO^{-})}{C V} = \frac{[HO^{-}]_{\acute{e}q}V}{C V} = \frac{[HO^{-}]_{\acute{e}q}}{C} = \frac{\frac{K_e}{[H_3O^{+}]_{\acute{e}q}}}{C} = \frac{K_e}{[H_3O^{+}]_{\acute{e}q}C} = \frac{K_e}{10^{-pH} C}$$

A.N:

$$\begin{cases} \tau_1 = \frac{K_e}{10^{-pH_1} C} = \frac{10^{-14}}{10^{-10.6} \times 1.0.10^{-2}} = 0.04 = 4\% \\ \tau_2 = \frac{K_e}{10^{-pH_2} C} = \frac{10^{-14}}{10^{-11.4} \times 1.0.10^{-2}} = 0.25 = 25\% \end{cases}$$

Le méthylammine $CH_3NH_{2(qq)}$ est plus dissocié dans l'eau que l'ammoniac $NH_{3(qq)}$, car :

$$\tau_2 > \tau_1$$

c. Conclusion

Pour des solutions des bases de *même concentration* $\boldsymbol{\mathcal{C}}$, une base est *plus dissocié* dans l'eau, ç-à-d son taux d'avancement final $\boldsymbol{\tau}$ est *plus grand* (base forte), quand :

pH de la solution de cette base est grand.

- La constante d'acidité K_A du couple mis en jeu est faible et donc le pK_A est grande.

Remarque:

La constante d'équilibre de la réaction d'une base $\boldsymbol{B}_{(aa)}$ avec l'eau $\boldsymbol{H}_2\boldsymbol{O}_{(l)}$ est :

$$K = \frac{[BH^{+}]_{\acute{e}q} \cdot [HO^{-}]_{\acute{e}q}}{[B]_{\acute{e}q}} = \frac{[BH^{+}]_{\acute{e}q} \cdot [HO^{-}]_{\acute{e}q} \cdot [HO^{-}]_{\acute{e}q}}{[B]_{\acute{e}q} \cdot [H_{3}O^{+}]_{\acute{e}q}} = \frac{[BH^{+}]_{\acute{e}q}}{[B]_{\acute{e}q} \cdot [H_{3}O^{+}]_{\acute{e}q}} \times [HO^{-}]_{\acute{e}q} \cdot [H_{3}O^{+}]_{\acute{e}q}$$

$$K = \frac{K_{e}}{K_{A}}$$

 K_A : est la constante d'acidité du couple $BH^+_{(aq)}/B_{(aq)}$.

IV. Diagramme de prédominance et de distribution d'espèces acides et basiques en solution

1. Diagramme de prédominance

On a:

$$pH = pK_A + log \frac{[A^-]_{\acute{e}q}}{[AH]_{\acute{e}q}}$$

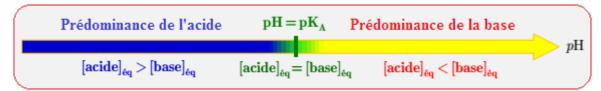
On distingue 3 cas:

→ Si:

$$pH < pK_A \quad \Rightarrow \quad \log \frac{[A^-]_{\acute{e}q}}{[AH]_{\acute{e}q}} < 0 \quad \Rightarrow \quad \frac{[A^-]_{\acute{e}q}}{[AH]_{\acute{e}q}} < 1 \quad \Rightarrow \quad [AH]_{\acute{e}q} > [A^-]_{\acute{e}q}$$

L'acide AH est le prédominant.

→ Si:


$$pH = pK_A \quad \Rightarrow \quad log \frac{[A^-]_{\acute{e}q}}{[AH]_{\acute{e}q}} = 0 \quad \Rightarrow \quad \frac{[A^-]_{\acute{e}q}}{[AH]_{\acute{e}q}} = 1 \quad \Rightarrow \quad [AH]_{\acute{e}q} = [A^-]_{\acute{e}q}$$

Aucune espèce chimique ne prédomine.

→ Si:

$$pH > pK_A \quad \Rightarrow \quad log \frac{[A^-]_{\acute{e}q}}{[AH]_{\acute{e}q}} > 0 \quad \Rightarrow \quad \frac{[A^-]_{\acute{e}q}}{[AH]_{\acute{e}q}} > 1 \quad \Rightarrow \quad [A^-]_{\acute{e}q} > [AH]_{\acute{e}q}$$

La base A^- est la prédominante.

2. Diagramme de distribution

On associe à chaque couple acide / base un *digramme de distribution* qui représente le pourcentage de chaque espèce en fonction du *pH* de la solution.

On considère une solution aqueuse de concentration \boldsymbol{c} contenant l'acide AH et sa base conjuguée A^- .

Le pourcentage de l'acide AH dans la solution est :

$$\%AH = \frac{[AH]_{\acute{e}q}}{[AH]_{\acute{e}q} + [A^-]_{\acute{e}q}}$$

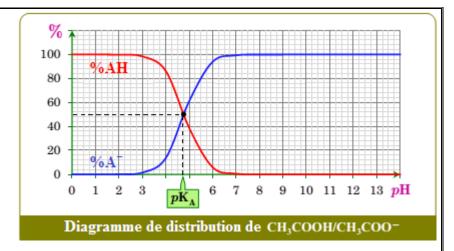
 \triangleright Le pourcentage de la base A^- dans la solution est :

$$%A^{-} = \frac{[A^{-}]_{\acute{e}q}}{[AH]_{\acute{e}q} + [A^{-}]_{\acute{e}q}}$$

Avec:

$$[AH]_{\acute{e}q} + [A^-]_{\acute{e}q} = C$$

> Si:


$$%AH = %A^{-}$$

Donc:

$$[AH]_{\acute{e}a} = [A^-]_{\acute{e}a}$$

Alors:

$$pH = pK_A$$

3. Applications aux indicateurs colorés acido-basiques

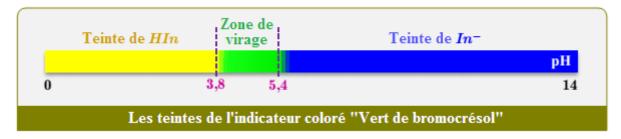
Les indicateurs colorés acido-basiques sont des solutions aqueuses constitués par des *couples acide / base* symbolisé par *HIn/In*⁻ dont les espèces conjuguées ont des *teintes différentes*.

L'acide *HIn* réagit avec l'eau selon l'équation :

$$HIn_{(aq)} + H_2O_{(l)} \quad \rightleftarrows \quad In_{(aq)}^- + H_3O_{(aq)}^+$$

Donc on écrit:

$$pH = pK_{A,ind} + log \frac{[In^{-}]_{\acute{e}q}}{[HIn]_{\acute{e}g}}$$


- La teinte de l'indicateur coloré dépend de l'espèce qui prédomine et donc du pH de la solution.
- → On admet que l'indicateur prend sa *teinte basique*, c'est-à-dire celle de *In*⁻, si :

$$\frac{[In^{-}]_{\acute{e}q}}{[HIn]_{\acute{e}q}} > 10 \qquad \Rightarrow \qquad log \frac{[In^{-}]_{\acute{e}q}}{[HIn]_{\acute{e}q}} > 1 \qquad \Rightarrow \qquad \textit{pH} > \textit{pK}_{\textit{A,ind}} + 1$$

→ On admet que l'indicateur prend sa teinte acide, c'est-à-dire celle de HIn, si :

$$\frac{[In^{-}]_{\acute{e}q}}{[HIn]_{\acute{e}q}} < \frac{1}{10} \qquad \Rightarrow \qquad log \frac{[In^{-}]_{\acute{e}q}}{[HIn]_{\acute{e}q}} > -1 \qquad \Rightarrow \qquad pH > pK_{A,ind} - 1$$

 \Rightarrow Dans la zone $pK_{A,ind} - 1 < pH < pK_{A,ind} + 1$, l'indicateur coloré prend une *teinte sensible* intermédiaire entre la teinte acide et la teinte basique. Cette zone est appelée *zone de virage* de l'indicateur coloré.

V. Constante d'équilibre K associée à une réaction acido-basique

Soit une réaction acido-basique entre l'acide HA_1 du couple HA_1/A_1^- (sa constante d'acidité K_{A_1}), et la base A_2^- du couple HA_2/A_2^- (sa constante d'acidité K_{A_2}).

L'équation de la réaction est :

$$HA_1 + A_2^- \qquad \rightleftarrows \qquad A_1^- + HA_2$$

 L 'expression de K_{A_1} est :

$$K_{A_1} = \frac{[A_1^-]_{\acute{e}q} \cdot [H_3 O^+]_{\acute{e}q}}{[H A_1]_{\acute{e}q}}$$

 $\norm L$ 'expression de K_{A_2} est :

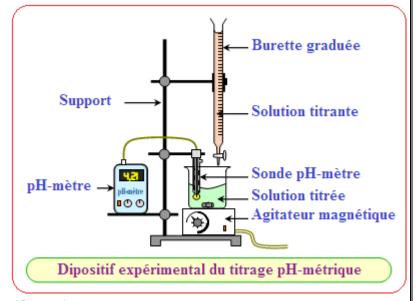
$$K_{A_2} = \frac{[A_2^-]_{\acute{e}q} \cdot [H_3 O^+]_{\acute{e}q}}{[H A_2]_{\acute{e}q}}$$

 \succ L'expression de la constante d'équilibre K associe à la réaction acido-basique précédente est :

$$K = \frac{[A_{1}^{-}]_{\acute{e}q} \cdot [HA_{2}]_{\acute{e}q}}{[HA_{1}]_{\acute{e}q} \cdot [A_{2}^{-}]_{\acute{e}q}}$$

$$\Rightarrow K = \frac{[A_{1}^{-}]_{\acute{e}q} \cdot [HA_{2}]_{\acute{e}q} \cdot [H_{3}O^{+}]_{\acute{e}q}}{[HA_{1}]_{\acute{e}q} \cdot [H_{3}O^{+}]_{\acute{e}q}} = \frac{[A_{1}^{-}]_{\acute{e}q} \cdot [H_{3}O^{+}]_{\acute{e}q}}{[HA_{1}]_{\acute{e}q}} \times \frac{[HA_{2}]_{\acute{e}q}}{[A_{2}^{-}]_{\acute{e}q} \cdot [H_{3}O^{+}]_{\acute{e}q}} = K_{A_{1}} \times \frac{1}{K_{A_{2}}}$$

D'où:


$$K = \frac{K_{A_1}}{K_{A_2}} = \frac{10^{-pK_{A_1}}}{10^{-pK_{A_2}}} = 10^{pK_{A_2} - pK_{A_1}}$$

VI. Titrages acido-basiques

1. Définition

- → Le dosage (ou titrage) consiste à déterminer la concentration d'une espèce chimique dite espèce titrée présente dans une solution, en faisant réagir cette espèce avec une autre espèce chimique dite espèce titrant de concentration connue.
- Lors une réaction de titrage d'un acide HA_1 (espèce titrée) par une base A_2^- (espèce titrant), il se produit une réaction acido-basique entre cet acide HA_1 et la base A_2^- selon l'équation :

$$HA_1 + A_2^- \qquad \rightleftarrows \qquad A_1^- + HA_2$$

2. Caractéristiques de la réaction de titrage (dosage)

La réaction de titrage doit être :

- **Rapide** : le système atteint rapidement son état final.
- ▲ Totale: La réaction s'arrête avec la disparition totale d'au moins un des réactifs, ç-à-d: $\tau = 1$
- ▲ Unique : la réaction se produit seulement entre l'espèce titrant et l'espèce titrée.

3. L'équivalence acido-basique

- L'équivalence, notée *E*, du titrage acido-basique d'un acide *HA* par une base *B* est l'état dans lequel l'acide *HA* et la base *B* disparaissent complètement en même temps du milieu réactionnel.
- A l'équivalence, le volume ajouté de la base B est appelé volume d'équivalence, et noté V_E ou V_{BE} .

On considère la réaction de titrage d'un acide HA de concentration C_A inconnue et de volume V_A par la base HO^- de concentration C_B et de volume V_B .

Le tableau d'avancement de la réaction mise en jeu est :

L'équation de la réaction		$HA_{(aq)}$ +	- HO _(aq)	⇄	$A^{(aq)}$	$H_2O_{(l)}$
L'état	L'avancement	Les quantités de matière en (mol)				
Initiale	0	$C_A V_A$	C_BV_B		0	
Intermédiaire	x	C_AV_A-x	C_BV_B-x		х	En excès
A l'équivalence	x_E	$C_A V_A - x_E$	$C_BV_E-x_E$		x_E	

A l'équivalence, l'acide **HA** et la base **HO**⁻ disparaissent complètement, ç-à-d :

$$\begin{cases} C_A V_A - x_E = 0 \\ C_B V_E - x_E = 0 \end{cases} \Rightarrow \begin{cases} x_E = C_A V_A \\ x_E = C_B V_E \end{cases} \Rightarrow C_A V_A = C_B V_E$$

Remarques:

- Avant l'équivalence $V_B < V_E$: La base $H0^-$ est le réactif limitant (réactif titrant).
- Après l'équivalence $V_B > V_E$: L'acide HA est le réactif limitant (réactif à titrer).
- On repère l'équivalence E par la *variation de l'une des grandeurs physiques* qui caractérisent le mélange réactionnel : le *pH*, la *conductivité* σ, ou la *couleur de la solution*.

VII. Titrage pH-métrique

1. Dosage d'un acide par une base

<u>Exemple</u>: Dosage d'une solution d'acide éthanoïque $CH_3COOH_{(aq)}$ par une solution d'hydroxyde sodium $(Na_{(aq)}^+ + HO_{(aq)}^-)$

On introduit dans un bécher un volume $V_A=20~mL$ d'une solution d'acide éthanoïque de concentration inconnue C_A . La burette graduée contient la solution d'hydroxyde sodium de concentration $C_B=2.10^{-2}~mol.~L^{-1}$. Un pH-mètre permet de suivre le pH de la solution après chaque ajout d'hydroxyde de sodium. On donne : $pK_A(CH_3COOH/CH_3COO^-)=4,8$.

L'équation de la réaction du dosage :

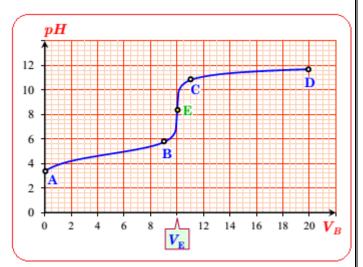
La réaction du dosage est totale, donc on utilise une seule flèche → dans l'équation :

$$CH_{3}COOH_{(aq)} + HO_{(aq)}^{-} \rightarrow CH_{3}COO_{(aq)}^{-} + H_{2}O_{(l)}$$

Etableau d'avancement de la réaction du dosage :

L'équation de la réaction		$CH_3COOH_{(aq)}$ +	$ HO_{(aq)}^{-}$	\rightarrow	$CH_3COO^{(aq)}$	$+ H_2 O_{(l)}$
L'état	L'avancement	Les quantités de matière en (mol)				
Initiale	0	$C_A V_A$	C_BV_B		0	
Intermédiaire	x	C_AV_A-x	C_BV_B-x		х	En excès
A l'équivalence	x_E	$C_A V_A - x_E$	$C_BV_E-x_E$		x_E	

La relation d'équivalence :


A l'équivalence, l'acide $CH_3COOH_{(aq)}$ et la base $HO_{(aq)}^-$ disparaissent complètement, ç-à-d :

$$\begin{cases} C_A V_A - x_E = 0 \\ C_B V_E - x_E = 0 \end{cases} \Rightarrow \begin{cases} x_E = C_A V_A \\ x_E = C_B V_E \end{cases} \Rightarrow \mathbf{C}_A V_A = \mathbf{C}_B V_E$$

$^{\odot}$ La courbe $pH = f(V_R)$:

La représentation graphique $pH = f(V_B)$ fair apparaitre trois parties :

- Partie AB $(0 < V_B < 9 mL)$: pH augmente légèrement.
- Partie BC ($9 < V_B < 11 \ mL$): pH augmente brusquement, et le mélange passe de l'état acide à l'état basique. Cette partie contient le point d'équivalence $E(V_E = 10 \ mL)$
- Partie CD ($V_B > 11 \, mL$) : pH augmente légèrement, et le mélange reste basique.

La constante d'équilibre K de la réaction de dosage :

A partir de l'équation de la réaction, on a :

$$K = \frac{[CH_{3}COO^{-}]_{\acute{e}q}}{[CH_{3}COOH]_{\acute{e}q}.[HO^{-}]_{\acute{e}q}} = \frac{[CH_{3}COO^{-}]_{\acute{e}q}.[H_{3}O^{+}]_{\acute{e}q}}{[CH_{3}COOH]_{\acute{e}q}.[HO^{-}]_{\acute{e}q}.[H_{3}O^{+}]_{\acute{e}q}}$$

$$K = \frac{[CH_{3}COO^{-}]_{\acute{e}q}.[H_{3}O^{+}]_{\acute{e}q}}{[CH_{3}COOH]_{\acute{e}q}} \times \frac{1}{[HO^{-}]_{\acute{e}q}.[H_{3}O^{+}]_{\acute{e}q}}$$

$$K = K_{A} \times \frac{1}{K_{e}} = \frac{K_{A}}{K_{e}}$$

$$K = \frac{10^{-pK_{A}}}{10^{-pK_{e}}} = \frac{10^{pK_{e}-pK_{A}}}{10^{-pK_{e}}}$$

$$K = 10^{14-4,8} = 1,6 \times 10^{9}$$

 \rightarrow On constate que $K \gg 10^4$, donc la réaction de dosage est *totale*.

Et aux d'avancement final τ de la réaction de dosage : (cas de $V_B = 5 \text{ mL}$)

A partir de la courbe $pH = f(V_B)$, la valeur de pH correspondante à $V_B = 5$ mL est :

$$pH = 4,8$$

On a:

$$\tau = \frac{x_f}{x_{max}}$$

• Détermination de x_{max} :

Puisque $V_E < V_B$, donc le réactif limitant est la base HO^- . Alors :

$$x_{max} = C_B V_B$$

• Détermination de x_f :

A partir du tableau d'avancement, on a :

$$n_f(HO^-) = C_B V_B - x_f$$

$$x_f = C_B V_B - n_f(HO^-) = C_B V_B - [HO^-]_f \times V_T = C_B V_B - \frac{K_e}{[H_3O^+]_f} \times (V_A + V_B)$$

$$x_f = C_B V_B - \frac{10^{-pK_e}}{10^{-pH}} \times (V_A + V_B)$$

$$x_f = C_B V_B - 10^{pH-pK_e} \times (V_A + V_B)$$

Finalement:

$$\tau = \frac{x_f}{x_{max}} = \frac{C_B V_B - 10^{pH - pK_e} \times (V_A + V_B)}{C_B V_B} = \frac{1 - \frac{10^{pH - pK_e} \times (V_A + V_B)}{C_B V_B}}{C_B V_B}$$

Application numérique :

$$\tau \approx 1$$

→ La réaction de dosage est *totale*.

2. Dosage d'une base par un acide

<u>Exemple</u>: Dosage d'une solution d'ammoniac $NH_{3(aq)}$ par une solution d'acide chlorhydrique $(H_3O^+_{(aq)} + Cl^-_{(aq)})$.

On dose un volume $V_B=10~mL$ d'une solution d'ammoniac $NH_{3(aq)}$ de concentration C_B inconnue par une solution d'acide chlorhydrique $(H_3O_{(aq)}^++Cl_{(aq)}^-)$ de concentration $C_A=4.10^{-2}mol.L^{-1}$

On donne : $pK_A(NH_4^+/NH_3) = 9, 2$.

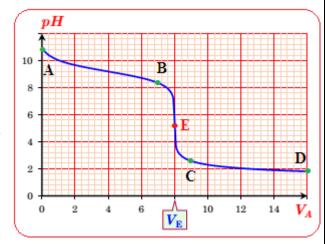
L'équation de la réaction du dosage :

$$NH_{3(aq)} + H_3O_{(aq)}^+ \longrightarrow NH_{4(aq)}^+ + H_2O_{(l)}$$

Le tableau d'avancement de la réaction du dosage :

L'équation de la réaction		$NH_{3(aq)}$ +	$H_3O^+_{(aq)}$	\rightarrow	$NH_{4(aq)}^{+}$	$+ H_2 O_{(l)}$
L'état	L'avancement	Les quantités de matière en (mol)				
Initiale	0	C_BV_B	$C_A V_A$		0	
Intermédiaire	x	C_BV_B-x	$C_A V_A - x$		x	En excès
A l'équivalence	x_E	$C_BV_B-x_E$	$C_A V_E - x_E$		x_E	

La relation d'équivalence :


A l'équivalence, l'acide $H_3\mathcal{O}^+_{(aq)}$ et la base $NH_{3(qq)}$ disparaissent complètement, ç-à-d :

$$\begin{cases} C_A V_E - x_E = 0 \\ C_B V_B - x_E = 0 \end{cases} \Rightarrow \begin{cases} x_E = C_A V_E \\ x_E = C_B V_B \end{cases} \Rightarrow \mathbf{C}_A \mathbf{V}_E = \mathbf{C}_B \mathbf{V}_B$$

$^{\text{GP}}$ La courbe $pH = f(V_A)$:

La représentation graphique $pH = f(V_A)$ fait apparaitre trois parties :

- Partie AB $(0 < V_A < 7 mL)$: pH diminue légèrement.
- Partie BC $(7 < V_A < 9 \ mL)$: pH diminue brusquement, et le mélange passe de l'état basique à l'état acide. Cette partie contient le point d'équivalence $E(V_E = 8mL)$
- Partie CD $(V_A > 9 mL)$: pH continue à diminuer, et le mélange reste acide.

La constante d'équilibre K de la réaction de dosage :

A partir de l'équation de la réaction, on a :

$$K = \frac{[NH_4^+]_{\acute{e}q}}{[NH_3]_{\acute{e}q} \cdot [H_3O^+]_{\acute{e}q}} = \frac{1}{K_A} = \frac{1}{10^{-pK_A}} = \frac{10^{pK_A}}{10^{-pK_A}}$$
$$K = 10^{9,2} = 1.6 \times 10^9$$

 \rightarrow On constate que $K \gg 10^4$, donc la réaction de dosage est *totale*.

Et aux d'avancement final τ de la réaction de dosage : (cas de $V_A = 4 \ mL$)

A partir de la courbe $pH = f(V_A)$, la valeur de pH correspondante à $V_A = \mathbf{4}$ mL est :

$$pH = 9, 2$$

On a:

$$\tau = \frac{x_f}{x_{max}}$$

• Détermination de x_{max} :

Puisque $V_E < V_A$, donc le réactif limitant est l'acide H_3O^+ . Alors :

$$x_{max} = C_A V_A$$

• Détermination de x_f :

A partir du tableau d'avancement, on a :

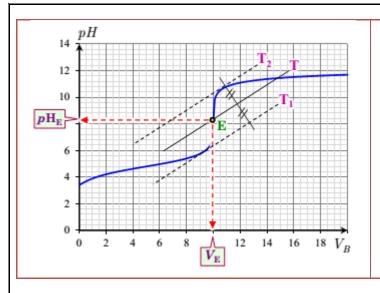
$$n_f(H_3O^+) = C_A V_A - x_f$$

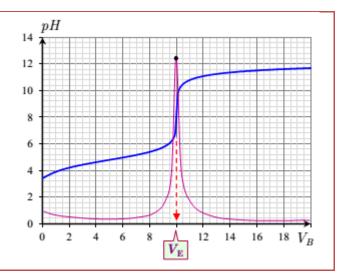
$$x_f = C_A V_A - n_f(H_3O^+) = C_A V_A - [H_3O^+]_f \times V_T$$

$$x_f = C_A V_A - 10^{-pH} \times (V_A + V_B)$$

Finalement:

$$\tau = \frac{x_f}{x_{max}} = \frac{C_A V_A - 10^{-pH} \times (V_A + V_B)}{C_A V_A} = \frac{1 - \frac{10^{-pH} \times (V_A + V_B)}{C_A V_A}}{C_A V_A}$$


Application numérique :


$$\tau \approx 1$$

→ La réaction de dosage est *totale*.

3. Détermination du point d'équivalence E

Méthode de la dérivée $\frac{dpH}{dV_P}$ Méthode des tangentes • On trace sur la courbe la courbe $pH = f(V_B)$, **O** On trace deux droites parallèles (T_1) et (T_2) une autre courbe $\frac{dpH}{dV_B} = f(V_B)$ représentant la tangentes à la courbe $pH = f(V_R)$ de deux côtés de la région contenant le point d'équivalence **E**. dérivée de pH par rapport au V_B en fonction de 2 On trace une troisième droite (T) parallèle et V_B . équidistante de deux droites (T_1) et (T_2) . **2** A l'abscisse V_E , la fonction $\frac{dpH}{dV_B}$ passe par un **3** La droite (T) coupe la courbe $pH = f(V_B)$ au extremum: point d'équivalence E: Un maximum pour le dosage de l'acide. $E\binom{V_E}{nH_E}$ Un minimum pour le dosage de la base.

VIII. Suivi colorimétrique d'un titrage acido-basique

1. Principe

S'il s'agit uniquement de repérer le volume d'équivalence V_E , on peut utiliser un *indicateur coloré* acidobasique convenablement choisi.

Dans un titrage colorimétrique, l'équivalence E est repérée par le changement de couleur d'un indicateur coloré ajouté dans la solution titrée au début du titrage.

2. Choix de l'indicateur coloré

Pour qu'un indicateur coloré permettre de repérer avec précision l'équivalence E d'un titrage acido-basique, il faut que sa zone de virage contienne la valeur du pH à l'équivalence (pH_E).

Exemples des indicateurs colorés :

Indicateur coloré	Teinte acide	Zone de virage	Teinte basique
Hélianthine	Rouge	3,1 - 4,4	jaune
Vert de bromocrésol	Jaune	3,8 - 5,4	Bleu
Rouge de chlorophénol	Jaune	4,8 - 6,4	Rouge
Bleu de bromothymol	Jaune	6,0 - 7,6	Bleu
Rouge de crésol	Jaune	7,2 - 8,8	Rouge
Phénolphtaléine	Incolore	8,2 - 10,0	Rose
Jaune d'alizarine R	Jaune	10,0 - 12,0	Rouge
Carmin d'indigo	Bleu	11,4 - 13,0	Jaune