le produit scalaire

I.
$$\vec{u}(x,y)$$
 it $\vec{v}(x',y')$
le produit scalare \vec{u} $\vec{v} = x x' + yy'$

$$COS(\overrightarrow{x}, \overrightarrow{y}) = \frac{\overrightarrow{x} \cdot \overrightarrow{y}}{||\overrightarrow{x}|| \cdot ||\overrightarrow{y}||}$$

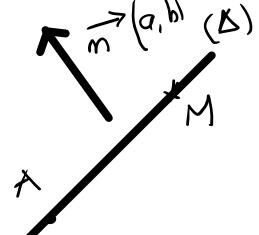
$$= \frac{x \cdot x' + y y'}{\sqrt{x^2 + y'^2} \sqrt{x'^2 + y'^2}}$$

$$\int x^2 + y^2 \sqrt{x'^2 + y'^2}$$

$$\int x = \int x =$$

. la surface du Triangl

. L'equation d'une droit définie par un vecteur normal



$$M(x,y) \in (D) \Leftrightarrow \overrightarrow{AM} \cdot \overrightarrow{m} = 0$$

$$\Leftrightarrow (x-x_A) \cdot (9) = 3$$

$$\Leftrightarrow (x-x_A) + b(y-y_A) = 3$$

Expl : (D) passe par A(3,2) et vecteur normale \vec{n} (4,-2) (D): 4(x-3)-2(y-2)=3

(D):
$$ax + by + c = 0$$

$$A(x_A, y_A)$$

$$C(A, (D)) = \frac{a \cdot x_A + b y_A + c}{\sqrt{a^2 + b^2}}$$

$$d(A,(D)) = \frac{2x_A - x_A + 3}{}$$

$$\sqrt{2^{2}+(-1)^{2}}$$

$$= \frac{|\mathcal{X} - \mathcal{X} + 3|}{\sqrt{5}} = \frac{3}{\sqrt{5}} = \frac{3\sqrt{5}}{5}$$

Cerde

. Une éguation du Cercle de centre Sc(a, h) et de ray on R

$$M(x,y) \in (4) \iff (x-a)^2 + (y-h)^2 = R^2$$

. Une equation du cercle de diametre [AB]

$$M(x,y) \in (C) \iff \overrightarrow{AM} \cdot \overrightarrow{BM} = 0$$

$$\iff \begin{pmatrix} x - x_A \\ y - y_A \end{pmatrix} \begin{pmatrix} x - x_B \\ y - y_B \end{pmatrix} \stackrel{\cdot}{A}$$

$$(2-2A)(x-xB)+(y-yA)(y-yB)=0$$

la tangente à un cercle

$$M(x,y) \in (\Delta) \iff \overrightarrow{AM} \cdot \overrightarrow{A\Omega} = 0$$

Position relative d'une droite et un cerd

$$d(\Omega,0) > R \qquad d(\Omega,0) = R \qquad d(\Omega,0) < R$$

$$(D) \cap (C) = \emptyset \qquad (D) \text{ tangente} \qquad (D) \text{ coupe}(C)$$

$$en & points$$

Déterminer les points d'inhers on résout

$$(x-a)^{2}+(y-b)^{2}=R^{2}$$

$$(x-a)^{2}+(y-b)^{2}=R^{2}$$

Dans le plan rapporté à un repère orthonormé
$$(O; \vec{i}, \vec{j})$$
 an considère les points $: A(2;0) : B(1;\sqrt{3})$
1.5pts
1.5pts
2)Calculer le produit scalaire $\overrightarrow{AO}.AB$ et les distances AO et AB .
2)Calculer $\cos(\overrightarrow{AO}, \overrightarrow{AB})$ et $\sin(\overrightarrow{AO}, \overrightarrow{AB})$.

0.5pts
0.5pts
0.5pts
Dans le plan rapporté à un repère orthonormé $(O; \vec{i}, \vec{j})$ on considère les points $: A(-1;2) : B(3;-4)$
5oit (C) l'ensemble des points M du plan vérifient $: \overrightarrow{AM}.\overrightarrow{BM} = -4$.
1)2-Montrer que $: x^2 + y^2 - 2x + 2y - 7 = 0$ est une équation cartésienne de l'ensemble (C) .

b-Montrer que (C) est un cercle de centre $\Omega(1,-1)$ et de rayon $R=3$.
2)a-Vérifier que $K(1;2) \in (C)$.
b-Donner une équation cartésienne de la droite tangente (D) au cercle (C) au point K .
3)a-Montrer que la droite (A) d'équation $x+y+3=0$ coupe le cercle (C) en deux points.
1.25pts
b-Déterminer les cordonnées des points d'intersection de la droite (A) et le cercle (C) .
4)Résoudre graphiquement le système :
$$\begin{cases} x^2+y^2-2x+2y-7 < 0 \\ x+y+3>0 \end{cases}$$
5)a-Vérifier que le point $H(1;4)$ est situé à l'extérieur du cercle (C) .
b-Donner les équations des tangentes au cercle (C) et qui passe par le point H .

A(2,0), B(1,
$$\sqrt{3}$$
)

1) $\overrightarrow{OA}(x_A-x_0, \sqrt{A}-x_0)$
 $\overrightarrow{OA}(2,0)$ d'ou $\overrightarrow{AO}(-2,0)$ = $det(\overrightarrow{AO}, \overrightarrow{AB})$

AB(1-2, $\sqrt{3}-0$)

AO AB

$$\overrightarrow{AB}(-1,\sqrt{3}) = \frac{2}{4} = \frac{2}{4}$$
2) $\overrightarrow{AO}(\overrightarrow{AO}, \overrightarrow{AB}) = \frac{12}{4} = \frac{12}{4}$

2) $\overrightarrow{AO}(\overrightarrow{AO}, \overrightarrow{AB}) = \frac{AO \overrightarrow{AB}}{AO \overrightarrow{AB}} = \frac{2}{4} = \frac{1}{2}$

3) @ Ona $\overrightarrow{COO}(\overrightarrow{AO}, \overrightarrow{AB}) = \frac{1}{2}$ at $\overrightarrow{AO}(\overrightarrow{AO}, \overrightarrow{AB}) = \frac{1}{2}$

 $(\overrightarrow{AO}, \overrightarrow{AB}) = -\frac{\pi}{2} [2\pi]$

Dans le plan rapporté à un repère orthonormé
$$(O, \bar{k}, \bar{j})$$
 on considère les points $:A(2;0):B(1;\sqrt{s})$ 1.5pts 1.5pts 2)Calculer $\cos(\overline{AO}, \overline{AB})$ et $\sin(\overline{AO}, \overline{AB})$ et $\sin(\overline{AO}, \overline{AB})$.

0.5pts 2)Calculer $\cos(\overline{AO}, \overline{AB})$ et $\sin(\overline{AO}, \overline{AB})$.

0.5pts 0.5pts 0.5pts Dans le plan rapporté à un repère orthonormé (O, \bar{k}, \bar{j}) on considère les points $:A(-1;2):B(3,-4)$.

1.25pts Dans le plan rapporté à un repère orthonormé (O, \bar{k}, \bar{j}) on considère les points $:A(-1;2):B(3,-4)$.

5oit (C) l'ensemble des points M du plan vérifient $:\overline{AM}, \overline{BM} = -4$.

1)2-Montrer que $:x^2+y^2-2x+2y-7=0$ est une équation cartésienne de l'ensemble (C) .

5-Montrer que (C) est un cercle de centre $\Omega(1,-1)$ et de rayon $R=3$.

2)a-Vérifier que $K(1;2) \in (C)$.

5-Donner une équation cartésienne de la droite tangente (D) au cercle (C) au point (C) et deux points.

1.25pts (C) d'équation (C) d'équation (C) d'équation de la droite (C) en deux points.

1.25pts (C) d'expendient les cordonnées des points d'intersection de la droite (C) et deux points.

1.25pts (C) d'expendient les cordonnées des points d'intersection de la droite (C) et deux points.

1.5pts (C) d'expendient les système : (C) et qui passe par le point (C) .

5)a-Vérifier que le point (C) 0 et situé à l'extérieur du cercle (C) 0.

5)a-Vérifier que le point (C) 0 et situé à l'extérieur du cercle (C) 0.

5)a-Vérifier que le point (C) 1 et situé à l'extérieur du cercle (C) 2.

5)a-Vérifier que le point (C) 3 est situé à l'extérieur du cercle (C) 4.

$$M(x,y) \in (C) \iff \overline{AM} \cdot \overline{BM} = 4$$

$$\Rightarrow (x-a)^{2} + (y-b)^{2} = R^{2}$$

$$\Rightarrow (x+1)(x-3) + (y-2)(y+4) = 4$$

$$\Rightarrow (x+1)(x-3) + (y-2)(y+4) = 4$$

$$\Rightarrow x^{2} - 3x + x - 3 + y^{2} + 4y - 2y - 8 = -4$$

$$\Rightarrow x^{2} + y^{2} - 2x + 2y - 7 = 0$$

$$\Rightarrow (x^{2} - 2x) + (y^{2} + 2y) - 7 = 0$$

$$\Rightarrow (x^{2} - 2x + 1) - 1 + (y^{2} + 2y + 1) - 1 - 7 = 0$$

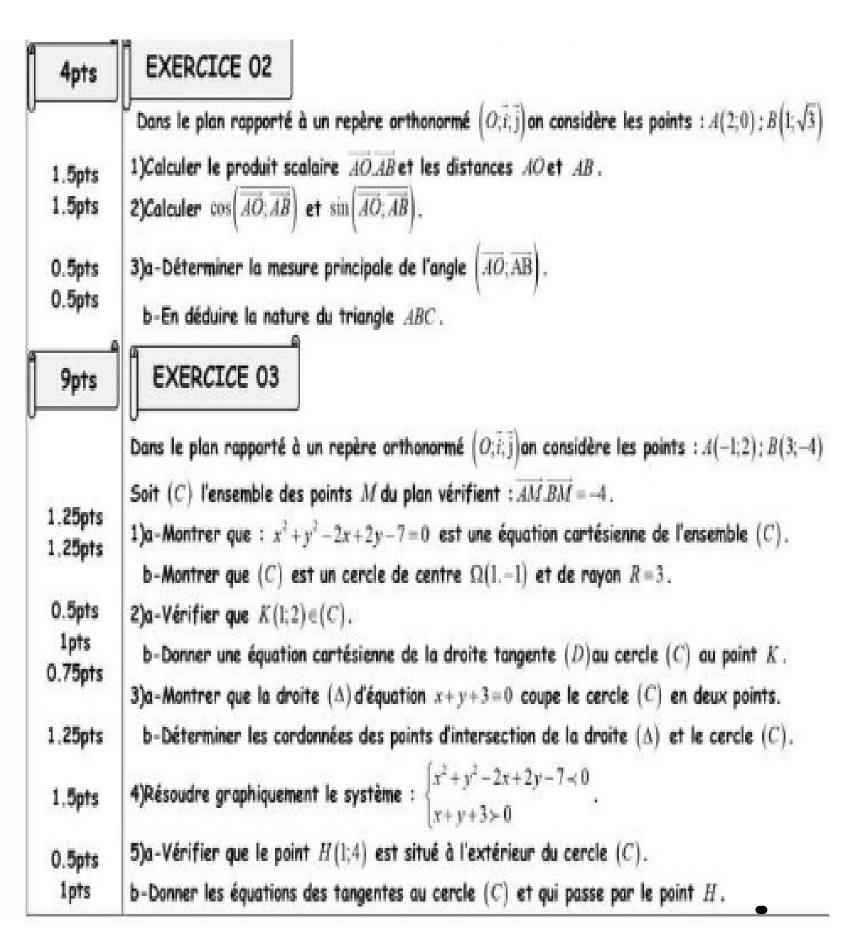
$$\Rightarrow (x-1)^{2} + (y+1)^{2} = 9 = 3^{2}$$

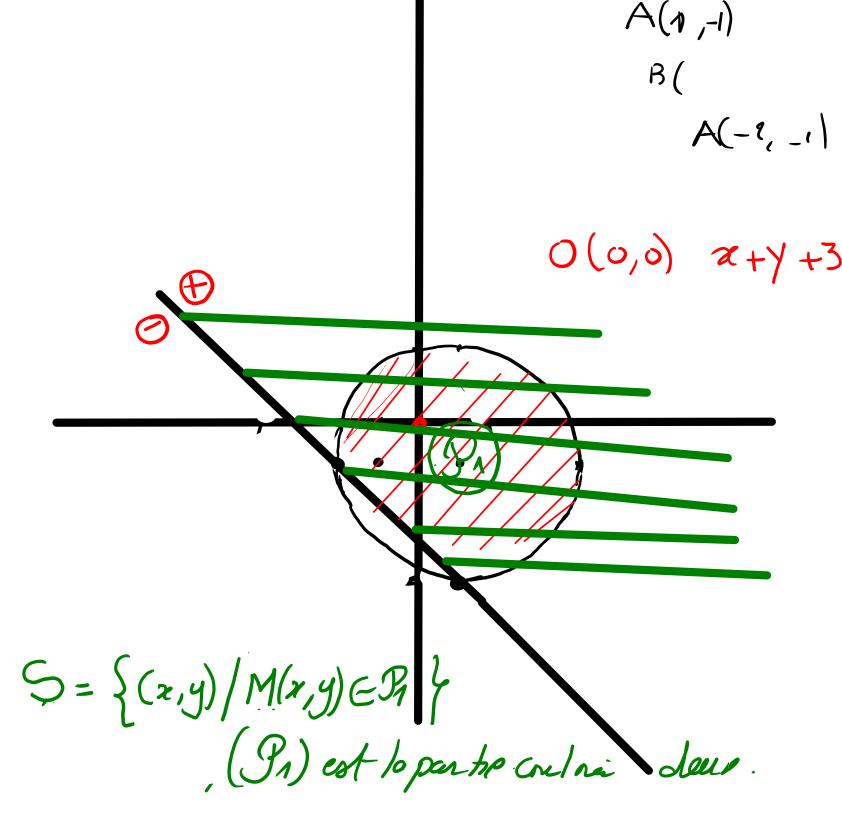
Dans le plan rapporté à un repère orthonormé
$$\left(O, i, j\right)$$
 on considère les points $:A(2;0):B(1;\sqrt{3})$
1.5pts
1.5pts
2)Calculer cos $\left(\overline{AO}, \overline{AB}\right)$ et sin $\left(\overline{AO}, \overline{AB}\right)$.
0.5pts
0.5pts
0.5pts
0.5pts
Dans le plan rapporté à un repère orthonormé $\left(\overline{O}, i, j\right)$ on considère les points $:A(-1;2):B(3;-4)$

Dans le plan rapporté à un repère orthonormé $\left(\overline{O}, i, j\right)$ on considère les points $:A(-1;2):B(3;-4)$

Soit (C) l'ensemble des points M du plan vérifient $:\overline{AMBM}=-4$.
1)2-Montrer que $:x^2+y^2-2x+2y-7=0$ est une équation cartésienne de l'ensemble (C) .
b-Montrer que (C) est un cercle de centre $\Omega(1,-1)$ et de rayon $R=3$.
2)a-Vérifier que $K(1;2)\in (C)$.
b-Donner une équation cartésienne de la droite tangente (D) au cercle (C) au point K .
3)a-Montrer que la droite (Δ) d'équation $x+y+3=0$ coupe le cercle (C) en deux points.
b-Déterminer les cardonnées des paints d'intersection de la droite (Δ) et le cercle (C) .
1.5pts
4)Résoudre graphiquement le système : $\begin{cases} x^2+y^2-2x+2y-7<0\\ x+y+3>0 \end{cases}$.
5)a-Vérifier que le point $H(1;4)$ est situé à l'extérieur du cercle (C) .
b-Donner les équations des tangentes au cercle (C) et qui passe par le point H .

Dans le plan rapporté à un repère orthonormé
$$(O, i, j)$$
 on considère les points $:A(2,0):B(1;\sqrt{3})$
1.5pts
1.5pts
1.5pts
2)Calculer $\cos\left(\overline{AO}, \overline{AB}\right)$ et $\sin\left(\overline{AO}, \overline{AB}\right)$.
2)Calculer $\cos\left(\overline{AO}, \overline{AB}\right)$ et $\sin\left(\overline{AO}, \overline{AB}\right)$.
0.5pts
0.5pts
0.5pts
0.5pts
Dans le plan rapporté à un repère arthonormé (O, i, j) on considère les points $:A(-1;2):B(3;-4)$
5oit (C) l'ensemble des points M du plan vérifient $:\overline{AM},\overline{BM}=-4$.
1)2-Montrer que $:x^2+y^2-2x+2y-7=0$ est une équation cartésienne de l'ensemble (C) .
5-b-Montrer que (C) est un cercle de centre $\Omega(1,-1)$ et de royon $R=3$.
2)a-Vérifier que $K(1;2)\in(C)$.
5-Donner une équation cartésienne de la droite tangente (D) au cercle (C) au point K .
1.5pts
1.5pts
4)Résoudre graphiquement le système $:\begin{cases} x^2+y^2-2x+2y-7=0\\ x+y+3>0 \end{cases}$
5)a-Vérifier que le point $H(1;4)$ est situé à l'extérieur du cercle (C) .
5-Donner les équations des tangentes au cercle (C) et qui passe par le point H .





Soit (u_n) la suite numérique définie par :

$$u_0 = 2$$
 et $u_{n+1} = \frac{5u_n - 1}{u_n + 3}$ pour tout $n \in \mathbb{N}$.

et soit f la fonction numérique définie sur $I = [1; +\infty[$

par:
$$f(x) = \frac{5x-1}{x+3}$$

- 1) Montrer que f est strictement croissante sur I et en déduire que : $f([1;+\infty[)\subset [1;+\infty[$
- 2) Montrer que : $(\forall x \in I)$ $f(x) x = -\frac{(x-1)^2}{x+3}$ puis en déduire que : $(\forall x \in I)$ $f(x) \le x$
- 3) Montrer que : $(\forall n \in \mathbb{N})$ $u_n > 1$
- 4) Montrer que la suite (u_n) est décroissante puis en

6) Soit
$$(v_n)$$
 la suite définie par : $v_n = \frac{1}{u_n - 1}$.

a) Montrer que la suite (v_n) est arithmétique de

raison
$$r = \frac{1}{4}$$
.

b) Exprimer v_n et u_n en fonction de n.

Exercice 11: Soit l'ensemble :

 $(C_m) = \{ M(x, y) \in (\mathcal{P})/x^2 + y^2 - 2mx + 4my + 4m^2 - 1 = 0 \}$ où m est un réel.

- 1- Montrer que pour tout m dans \mathbb{R} , l'ensemble (C_m) est un cercle et déterminer ses éléments.
- 2- Déterminer l'équation cartésienne du plus petit cercle (C_m) .
- 3- Déterminer l'ensemble dans lequel varient les centres Ω_m quand m décrit $\mathbb R$
- 4- a) Déterminer pour quelles valeurs de m le point A(-1,2) appartient-il à $\binom{C_m}{m}$
- b) Soit $M_0(x_0; y_0)$ un point donné dans le plan, existent-ils toujours des réels m qui vérifient $M_0 \in (C_m)$
- 5- Déterminer s'il existe l'intersection de tous les cercles $\left(C_{\scriptscriptstyle m}\right)$

Exercice1: dans Le plan (\mathcal{P}) est rapporté à un repère orthonormé $\mathcal{R}\left(O;\vec{i};\vec{j}\right)$ Considérons les points

$$A(1;-3)$$
 et $B(3;7)$ et $C(-3;1)$

- 1)Montrer que le triangle ABC est rectangle en C
- 2)Calculer la surface du triangle ABC

Exercice2: dans Le plan (\mathcal{P}) est rapporté à un repère orthonormé $\mathcal{R}\left(O;i;j\right)$ Considérons les points

$$A(5;0)$$
 et $B(2;1)$ et $C(6;3)$

- 1) Calculer $\cos\left(\overrightarrow{AB}; \overrightarrow{AC}\right)$ et $\sin\left(\overrightarrow{AB}; \overrightarrow{AC}\right)$
- 2)en déduire une mesure de l'angle $\left(\overline{AB};\overline{AC}\right)$

Exercice3: déterminer une équation cartésienne de la droite (D) qui passe par A(0;1) et qui admet $\vec{n}(2;1)$ comme vecteur normal

Exercice4: donner un vecteur normal a la droite (D) dans les cas suivants : 1)(D): x-2y+5=0

2)(D):
$$2y - 3 = 0$$
 3)(D): $x - 1 = 0$

Exercice9: dans Le plan (\mathcal{P}) est rapporté à un repère orthonormé et direct $\mathcal{R}(o;i;j)$ Considérons les points

$$A(1;-1)$$
 et $B(4;-1)$ et $C(-2;2)$

- 1) Calculer: $\overrightarrow{AB} \cdot \overrightarrow{AC}$ et $\det(\overrightarrow{AB}; \overrightarrow{AC})$
- 2) en déduire une mesure de l'angle (AB; AC)
- 3) Calculer la surface du triangle ABC
- 4) déterminer une équation cartésienne
- de la hauteur du triangle ABC passant par A
- 5) déterminer une équation cartésienne

de la bissectrice de l'angle
$$\left(AB;AC\right)$$

Exercice 10 : déterminer l'équation cartésienne du cercle de centre $\Omega(-1,2)$ et de rayon r=3

Exercice11: Déterminer L'ensemble (E) dans les cas suivants:

- 1) (E): $x^2 + y^2 x + 3y 4 = 0$
- **2)**(E): $x^2 + y^2 6x + 2y + 10 = 0$
- 3) (E): $x^2 + y^2 4x + 5 = 0$

Exercice ①: (07,00 pts)

Soit (u_n) une suite définie par : $u_0 = 2$ et $u_{n+1} = \frac{4u_n - 1}{u_n + 2}$ pour tout n dans IN

- 1) Montrer par récurrence $u_n \ge 1$ pour tout n dans IN
- 2) Montrer que $u_{n+1} u_n = \frac{-(u_n 1)^2}{u_n + 2}$ pour tout n dans IN puis déduire que (u_n) est

décroissante et convergente.

Soit (v_n) une suite définie par $v_n = \frac{3}{u_n - 1}$ pour tout n dans IN

- 3) a)Montrer que (v,) est une suite arithmétique déterminer sa raison et son premier terme.
 - b) Écrire v_n en fonction de n puis montrer que $u_n = \frac{n+6}{n+3}$ pour tout n dans IN.
 - c) Calculer la limite de la suite (u,)
- 4) Calculer la limite de la suite (w_n) définie par $w_n = u_n \sqrt{3 + u_n}$ pour tout n dans IN

	1.00	
	1,75	
2.	1,25	

0,50

1,00

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par: $\begin{cases} u_0=3\\ u_{n+1}=\frac{8(u_n-1)}{u_n+2} \end{cases} ; (\forall n\in\mathbb{N})$

- 1 Montrer par récurrence que: $\forall n \in \mathbb{N}; 2 < u_n < 4$
- (a) Montrer que $(u_n)_{n \in \mathbb{N}}$ est une suite croissante ,puis en déduire que $\forall n \in \mathbb{N}; 3 < u_n < 4$
 - (b) En déduire que $(u_n)_{n\in\mathbb{N}}$ est convergente
- (3) (a) Montrer que $\forall n \in \mathbb{N}; 0 < 4 u_{n+1} \le \frac{4}{5}(4 u_n)$
 - (b) En déduire que : $\forall n \in \mathbb{N} : 0 < 4 u_n \le \left(\frac{4}{5}\right)^n$, puis calculer $\lim_{n \to +\infty} u_n$
- $\overline{\langle \mathbf{4} \rangle}$ On pose $\forall n \in \mathbb{N} \ ; v_n = \frac{u_n 4}{u_n 2}$
 - (a) Montrer que $(u_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison $\frac{2}{3}$
 - (b) En déduire que v_n , puis u_n en fonction de n.
 - \bigcirc Retrouver alors $\lim_{n\to+\infty} u_n$
- (5) On pose: $\forall n \in \mathbb{N}$; $S_n = v_0 + v_1 + v_2 + \dots + v_n$, et $T_n = \frac{2}{u_0 - 2} + \frac{2}{u_1 - 2} + \frac{2}{u_2 - 2} + \dots + \frac{2}{u_n - 2}$
 - (a) Calculer S_n et T_n en fonction de n.
 - **(b)** En déduire que : $\lim_{n\to+\infty} S_n$ et $\lim_{n\to+\infty} \frac{T_n}{n}$