
| Lycée technique al idrissi / Devoir 1/Semestre1/ 1 <sup>ére</sup> BAC/                                                                                                                                              | PC/                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| www.pc1.ma                                                                                                                                                                                                          |                            |
| NOM :Note :Num :                                                                                                                                                                                                    | <b></b>                    |
| CHIMIE (7pts) I-On considére un volume v=20ml de l'ether liquide de formule C <sub>4</sub> H <sub>10</sub> O,sa = 0,71 g/ml .On donne : 1-Calculer la masse molaire de l'ethanol                                    | a masse volumique est      |
| 2-Calculer la quantité de matiére de l'ether                                                                                                                                                                        |                            |
| II-Cette quantité de matiére a l'etat gazeux occupe un volume Và une tem θ = 34°C et sous pression p=10 <sup>5</sup> Pa 1-Calculer le volume molaire dans les memes conditions de température e donne R= 8.31 (S.I) | _                          |
| 2- En deduire la valeur de V                                                                                                                                                                                        | ···········                |
| 3-Enoncer la loi de BOYLE-MARIOTTE                                                                                                                                                                                  |                            |
| 4-En appliquant cette loi detérminer le volume V' qui occupera la meme q<br>l'ether sous pression p'= 1,5 .10 <sup>5</sup> Pa a temperature constante                                                               | <br>quantitée de           |
| PHYSIQUE 1(7pts) Un disque de diametre d= 30cm tourne autour d' un axe fixe passant par soi                                                                                                                         | n centre.                  |
| La courbe de la figure représente la variation de l'abscisse angulaire en foction du temps  1- Quelle est la nature du mouvement de disque. Justifier votre réponse                                                 | θ(rad) 2,0 1,5             |
| 2- Déduire de la courbe la valeur de sa vitesse angulaire                                                                                                                                                           | 1,0<br>0,5<br>0 5 10 15 20 |
| et ecrire l'equation horaire du mouvement $	heta(t)$ :                                                                                                                                                              |                            |

| 3-Calculer sa frequence et sa periode                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4-Déterminer la vitesse linéaire d' un point M situé sur la périphérie du disque : v <sub>M</sub>                                                                                                |
| 5-Soit un point N situé à une distance D=10cm de la périphérie du disque.donner l'expression de la vitesse v <sub>N</sub> en fonction de v <sub>M</sub> ,d et D .Calculer sa valeur              |
|                                                                                                                                                                                                  |
| Un skieur de masse $m$ = 70K $g$ considéré comme ponctuel se déplace le long d'une glissière ABCD                                                                                                |
| située dans un plan vertical. La piste ABCD comprend trois parties : (voir figure).                                                                                                              |
| - Une partie AB rectiligne de longueur AB=5m incliné d' un angle $\alpha$ =30° par rapport à l' horizontale                                                                                      |
| - Une partie BC rectiligne horizontale de longueur BC=2m                                                                                                                                         |
| - Une partie CD circulaire de rayon r=1m tel que θ=60°                                                                                                                                           |
| On donne $g = 10 \text{ N/kg}$ ;                                                                                                                                                                 |
| 1) Calculer le travail du poids P du skieur au cours de son déplacement entr A et B, B et C, C et D                                                                                              |
| en précisant sa nature.                                                                                                                                                                          |
| 2) Calculer sa puissance instantanée en un point M situé entre Aet B sachant que sa vitesse en ce point est v=2m/s                                                                               |
| 3) Sur la piste AC, le skieur est soumis à des forces de frottement d' intensitée f constante tel que f=0,2N.  Calculer le travail de cette force au cours de deplacement du skieur entre Aet C. |
|                                                                                                                                                                                                  |
| $\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array}$                                                                                                                       |

BONNE CHANCE



**4.4.** Déterminer la vitesse linéaire d'un point situé à 2,0 cm du centre du CD. (0,5point)

| $ v = 7.2 \ 10^2 \ m.  s^{-1} $                 | $v = 7.2 \ 10^{-2} \ m.  s^{-1}$                                                               | $\Box$ 7.2 10 <sup>-2</sup> m.s             |
|-------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------|
| Q5: On dissout 1,8 g de glucos                  | e $C_6H_{12}O_6$ dans 500 mL d'eau. Sa concent                                                 | ration massique est : (0,5point)            |
| ☐ 3,6 g.L-1                                     | $\Box$ 0,2 mg. $L^{-1}$                                                                        | $\square$ 20 mg.L <sup>-1</sup>             |
| Q6: La relation entre la concen                 | ntration massique et molaire est : (0,5point                                                   | t)                                          |
| $\Box C = {^{C_m}/_{V_S}}$                      | $\Box C_m = {}^m/_{V_S}$                                                                       | $\Box C = C_m.M$                            |
| Q7: Donner l'équation d'état d                  | lu gaz parfait en précisant l'unité de chaqu                                                   | ue grandeur. (0,5point)                     |
|                                                 | d'un gaz dans les conditions suivantes : $R$ donne : $R = 8,31$ (SI) et $1$ atm = $101325$ $R$ |                                             |
|                                                 | Physique 2 (7 pts)                                                                             |                                             |
| La transmission du mouvement es<br>glissement   | st assurée par une courroie tournant sans                                                      |                                             |
| La fréquence de rotation du mote                | $ur\ est\ N_A = 3000\ tr/min$                                                                  |                                             |
| La poulie du moteur a un diamètr $D_B = 40$ cm. | re $D_A = 10$ cm et la poulie du tambour                                                       |                                             |
| 1. Convertir la fréquence de ro                 | tation du moteur en tour par seconde. ( <b>0,5pc</b>                                           | pint)                                       |
| 2. Déterminer la vitesse angula                 | uire $oldsymbol{\omega_A}$ du moteur en <b>rad</b> /s. ( <b>Ipoint</b> )                       |                                             |
| 3. Calculer la vitesse linéaire a               | l'un point de la courroie en <b>m/s</b> et en <b>Km/h</b> . (                                  | 1point)                                     |
| 4. Déterminer la vitesse angula                 | uire $oldsymbol{\omega_B}$ du tambour. ( $oldsymbol{Ipoint}$ )                                 |                                             |
| 5. En déduire la fréquence de r                 | votation $N_B$ du tambour. ( $\emph{1point}$ )                                                 |                                             |
| 6. Quelle est la relation littéral              | le entre les fréquences de rotation $N_A$ et $N_B$ de                                          | u moteur et du tambour. ( <b>1,5point</b> ) |
| 7. Calculer la vitesse d'un poin                | ut de la circonférence du tambour de diamètre                                                  | $c D_T = 100 cm. (Ipoint)$                  |
|                                                 |                                                                                                |                                             |

## Données:

 $M(C)=12 \text{ g/mol}; M(H)=1 \text{ g/mol}; M(O)=16 \text{ g/mol}; M(S)=32 \text{ g/mol}; R=8,314 \text{ S.I}; NA=6,02 \cdot 10^{23} \text{ mol}^{-1}$ 

- 1) Calculer la quantité de la matière existant dans une masse m = 8g du soufre S.
- 2) Déterminer le nombre d'atome du soufre qui contiennent cette masse.
- 3) L'éthanol  $C_2H_5OH$  est un liquide d'une densité d=0.79 par rapport à l'eau.
  - 3-1) Calculer la quantité de matière dans une volume V = 100 ml de ce liquide.
  - 3-2) déterminer la masse de cette quantité de l'éthanol.
- 4) Une bouteille cylindrique de volume V=2  $m^3$  contient du dioxygène gazeux sous une pression de P1=1013hPa à la température de  $25^{\circ}C$ .
  - **4-1**) Calculer  $n_1$  la quantité de matière  $O_2$  qui contient la bouteille.
- **4-2)** Si cette quantité de gaz est contenue dans un récipient de **20** L, à la même température que précédemment, quelle est la pression du gaz à l'intérieur de ce récipient ?
- **4-3**) On fait entrer dans la bouteille le dioxyde de carbone  $CO_2$  gazeux, La pression à l'intérieur de la bouteille augmente  $P2=1040\ hPa$ . Calculer la masse du mélange m dans la bouteille.

| Keponse: |
|----------|
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |