	Exercice 3 (4 points):
0,75	A) Résoudre dans \mathbb{C} l'équation (E): $z^2 + \sqrt{3}z + 1 = 0$
0,73	B) Dans le plan complexe rapporté à un repère orthonormé directe $(0;\vec{u};\vec{v})$, on
	considère les points A;B;CetDd'affixes respectifs
	$a = \frac{\sqrt{3}}{2} + \frac{1}{2}i$; $b = 2 + \sqrt{3} + i$; $c = \bar{b}$ et $d = b^{12}$
0,5	1) Ecrire a sous forme exponentielle puis montrer que $ b = \sqrt{8 + 4\sqrt{3}}$
	2) Soit R la rotation de centre O et d'angle $\frac{\pi}{6}$
0,5	a) Montrer que B est l'image du point C par la rotation R
0,5	b) Montrer que $arg(b) \equiv \frac{\pi}{12}[2\pi]$
	3) Soit e l'affixe du point E l'image de B par la translation T de vecteur \vec{v}
0,75	a) Montrer que $\frac{d}{e-b} = i(8+4\sqrt{3})^6$
0,5	b) En déduire que les droites (BE) et (OD) sont perpendiculaires
0,5	4) Déterminer l'ensemble des points M d'affixe z qui vérifie :
	$ \bar{z}-2-\sqrt{3}-i =5$

	Exercice 3 (4 points):
0,75	A) Résoudre dans \mathbb{C} l'équation (E): $z^2 + \sqrt{3}z + 1 = 0$
0,73	B) Dans le plan complexe rapporté à un repère orthonormé directe $(0;\vec{u};\vec{v})$, on
	considère les points A;B;CetDd'affixes respectifs
	$a = \frac{\sqrt{3}}{2} + \frac{1}{2}i$; $b = 2 + \sqrt{3} + i$; $c = \bar{b}$ et $d = b^{12}$
0,5	1) Ecrire a sous forme exponentielle puis montrer que $ b = \sqrt{8 + 4\sqrt{3}}$
	2) Soit R la rotation de centre O et d'angle $\frac{\pi}{6}$
0,5	a) Montrer que B est l'image du point C par la rotation R
0,5	b) Montrer que $arg(b) \equiv \frac{\pi}{12}[2\pi]$
	3) Soit e l'affixe du point E l'image de B par la translation T de vecteur \vec{v}
0,75	a) Montrer que $\frac{d}{e-b} = i(8+4\sqrt{3})^6$
0,5	b) En déduire que les droites (BE) et (OD) sont perpendiculaires
0,5	4) Déterminer l'ensemble des points M d'affixe z qui vérifie :
	$ \bar{z}-2-\sqrt{3}-i =5$

	Exercice 3 (4 points):
0,75	A) Résoudre dans \mathbb{C} l'équation (E): $z^2 + \sqrt{3}z + 1 = 0$
0,73	B) Dans le plan complexe rapporté à un repère orthonormé directe $(0;\vec{u};\vec{v})$, on
	considère les points A;B;CetDd'affixes respectifs
	$a = \frac{\sqrt{3}}{2} + \frac{1}{2}i$; $b = 2 + \sqrt{3} + i$; $c = \bar{b}$ et $d = b^{12}$
0,5	1) Ecrire a sous forme exponentielle puis montrer que $ b = \sqrt{8 + 4\sqrt{3}}$
	2) Soit R la rotation de centre O et d'angle $\frac{\pi}{6}$
0,5	a) Montrer que B est l'image du point C par la rotation R
0,5	b) Montrer que $arg(b) \equiv \frac{\pi}{12}[2\pi]$
	3) Soit e l'affixe du point E l'image de B par la translation T de vecteur \vec{v}
0,75	a) Montrer que $\frac{d}{e-b} = i(8+4\sqrt{3})^6$
0,5	b) En déduire que les droites (BE) et (OD) sont perpendiculaires
0,5	4) Déterminer l'ensemble des points M d'affixe z qui vérifie :
	$ \bar{z}-2-\sqrt{3}-i =5$

7	Exercice 3 (4 points):
0,75	A) Résoudre dans \mathbb{C} l'équation (E): $z^2 + \sqrt{3}z + 1 = 0$
0,73	B) Dans le plan complexe rapporté à un repère orthonormé directe $(o; \vec{u}; \vec{v})$, on
	considère les points A;B;C et D d'affixes respectifs
	$a = \frac{\sqrt{3}}{2} + \frac{1}{2}i$; $b = 2 + \sqrt{3} + i$; $c = \bar{b}$ et $d = b^{12}$
0,5	1) Ecrire <i>a</i> sous forme exponentielle puis montrer que $ b = \sqrt{8 + 4\sqrt{3}}$
	2) Soit R la rotation de centre 0 et d'angle $\frac{\pi}{6}$
0,5	a) Montrer que B est l'image du point C par la rotation R
0,5	b) Montrer que $arg(b)\equiv rac{\pi}{12}[2\pi]$
22000000	3) Soit <i>e</i> l'affixe du point <i>E</i> l'image de B par la translation <i>T</i> de vecteur \vec{v}
0,75	a) Montrer que $\frac{d}{e-b} = i(8+4\sqrt{3})^6$
0,5	b) En déduire que les droites (BE) et (OD) sont perpendiculaires
0,5	4) Déterminer l'ensemble des points M d'affixe z qui vérifie :
0,0	$ \bar{z}-2-\sqrt{3}-i =5$

	Exercice 4 (2 points):
	Une urne U_1 contient cinq boules portant les nombres 1 ;1 ;1 ;2 ;3 et une urne U_2
	contient quatre boules portant les nombres 1;1;2;2
	On suppose que les boules sont indiscernables au toucher
	On choisit au hasard l'un des urnes et on tire simultanément deux boules de cette urne
	On considère les évènements suivants :
	A: "Les boules tirées portant des nombres impairs "
	B: "Les boules tirées portant des nombres pairs "
	${\it C}$: " Une boule porte un nombre pair et l'autre porte un nombre impaire "
0,75	1) Montrer que $P(A) = \frac{23}{60}$
0,5	2) Montrer que $P(B) = \frac{1}{12}$
0,75	3) Calculer $P(C)$

	Exercice 4 (2 points):
	Une urne U_1 contient cinq boules portant les nombres 1 ;1 ;1 ;2 ;3 et une urne U_2
	contient quatre boules portant les nombres 1;1;2;2
	On suppose que les boules sont indiscernables au toucher
	On choisit au hasard l'un des urnes et on tire simultanément deux boules de cette urne
	On considère les évènements suivants :
	A: "Les boules tirées portant des nombres impairs "
	B: "Les boules tirées portant des nombres pairs "
	${\it C}$: " Une boule porte un nombre pair et l'autre porte un nombre impaire "
0,75	1) Montrer que $P(A) = \frac{23}{60}$
0,5	2) Montrer que $P(B) = \frac{1}{12}$
0,75	3) Calculer $P(C)$

Dans le plan complexe rapporté au repère orthonormé, considérons les points A(a); B(b); C(c); D(d) tel que: a = 1 + i; $b = \overline{a}$; c = -1 + i et d = -a

at
$$d = -a$$

et
$$d = -a$$

et
$$d = -a$$

$$d = -a$$

$$d = -a$$

$$a = -a$$

$$e OA = OC$$

1) a) Déterminer la forme trigonométrique de a et c et vérifier que OA = OCb) En déduire que les points A : B : C et D appartenant au même cercle (C) et

déterminer le centre et le rayon du cercle (C) 2) a) Montrer que b-a=i(c-a) et déduire la nature du triangle ABC

b) Déduire que B est l'image du point C par la rotation R de centre A et d'angle
$$\frac{\pi}{2}$$

d) Déduire que le quadrilatère ABDC est un carré

e le quadrilatere ABDC est un carre e le point E d'affixe
$$e = 1 + 2i$$

c) Déterminer l'image du point B par la tarnslation T de vecteur \overrightarrow{AC}

3) On considére le point E d'affixe e = 1 + 2i

a) Vérifier que
$$\frac{b-a}{e-a} = -2$$

argument θ tel que $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$

b) En déduire que B est l'image de E par l'homothétie h de centre A et de rapport -2

4) Une urne contient 10 boules indiscernables au toucher, six boules portant les nombres complexes
$$a$$
; b ; c ; d ; 1 $et - 1$ et quatre boules portant les nombres

complexes $i:-i:-\sqrt{2}$ et $\sqrt{2}$ On tire au hasard et simultanément deux boules de cette urne

a) Calculer
$$P(A)$$
 où A" Les boules tirées portant des nombres réels "

b) Calculer P(B) où B: "Les boules tirées portant des nombres complexes dont un

argument
$$\theta$$
 tel que $-\frac{n}{2} \le \theta \le \frac{n}{2}$
c) Calculer $P(C)$ où C : "Parmi les boules tirées au moins une boule portant un

nombre complexe dont le module est égale à
$$\sqrt{2}$$
 "
d) Calculer $P_B(A)$; la probabilité de A sachant que l'évènement B est réalisé.

Les événements A et B sont ils indépendents 2 instifien vertre réponse 2

Dans le plan complexe rapporté au repère orthonormé, considérons les points A(a); B(b); C(c); D(d) tel que: a = 1 + i; $b = \overline{a}$; c = -1 + i et d = -a

at
$$d = -a$$

et
$$d = -a$$

et
$$d = -a$$

$$d = -a$$

$$d = -a$$

$$a = -a$$

$$e OA = OC$$

1) a) Déterminer la forme trigonométrique de a et c et vérifier que OA = OCb) En déduire que les points A : B : C et D appartenant au même cercle (C) et

déterminer le centre et le rayon du cercle (C) 2) a) Montrer que b-a=i(c-a) et déduire la nature du triangle ABC

b) Déduire que B est l'image du point C par la rotation R de centre A et d'angle
$$\frac{\pi}{2}$$

d) Déduire que le quadrilatère ABDC est un carré

e le quadrilatere ABDC est un carre e le point E d'affixe
$$e = 1 + 2i$$

c) Déterminer l'image du point B par la tarnslation T de vecteur \overrightarrow{AC}

3) On considére le point E d'affixe e = 1 + 2i

a) Vérifier que
$$\frac{b-a}{e-a} = -2$$

argument θ tel que $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$

b) En déduire que B est l'image de E par l'homothétie h de centre A et de rapport -2

4) Une urne contient 10 boules indiscernables au toucher, six boules portant les nombres complexes
$$a$$
; b ; c ; d ; 1 $et - 1$ et quatre boules portant les nombres

complexes $i:-i:-\sqrt{2}$ et $\sqrt{2}$ On tire au hasard et simultanément deux boules de cette urne

a) Calculer
$$P(A)$$
 où A" Les boules tirées portant des nombres réels "

b) Calculer P(B) où B: "Les boules tirées portant des nombres complexes dont un

argument
$$\theta$$
 tel que $-\frac{n}{2} \le \theta \le \frac{n}{2}$
c) Calculer $P(C)$ où C : "Parmi les boules tirées au moins une boule portant un

nombre complexe dont le module est égale à
$$\sqrt{2}$$
 "
d) Calculer $P_B(A)$; la probabilité de A sachant que l'évènement B est réalisé.

Les événements A et B sont ils indépendents 2 instifien vertre réponse 2

	Exercice 3 (4 points):
	A) On considère dans \mathbb{C} l'équation $(E): z^2 - 2(\sqrt{2} - \sqrt{6})z + 16 = 0$
0,5	1) Vérifier que le discriminant de (E) est $\Delta=-4ig(\sqrt{6}+\sqrt{2}ig)^2$
0,5	2) En déduire les solutions de (E)
0,5	B) Dans le plan complexe rapporté au repère orthonormé , considérons les
	points $A(a)$; $B(b)$; $C(c)$; $D(d)$ tel que : $a = \sqrt{2} - \sqrt{6} + (\sqrt{2} + \sqrt{6})i$; $b = -2\sqrt{6}$; $c = \overline{a}$
0,5	1) a) Montrer que $a = \left(-\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)c$
0,5	b) Montrer que A est l'image de C par la rotation de centre O et d'angle $\frac{7\pi}{6}$
0,5	c) En déduire que 2 $arg(a) \equiv \frac{7\pi}{6}[2\pi]$
	2) Soit T la tarnslation de vecteur \overrightarrow{BA}
0,5	a) Montrer que $d=2\sqrt{2}$ est l'affixe du point D l'image de C par T
0,5	b) Vérifier que $c - b = i(a - b)$ puis en déduire la nature du triangle ABC
0,5	c) Déduire que le quadrilatère ABDC est un carré

	Exercice 3 (4 points):
	A) On considère dans \mathbb{C} l'équation $(E): z^2 - 2(\sqrt{2} - \sqrt{6})z + 16 = 0$
0,5	1) Vérifier que le discriminant de (E) est $\Delta = -4(\sqrt{6} + \sqrt{2})^2$
0,5	2) En déduire les solutions de (E)
0,0	B) Dans le plan complexe rapporté au repère orthonormé , considérons les
	points $A(a)$; $B(b)$; $C(c)$; $D(d)$ tel que : $a = \sqrt{2} - \sqrt{6} + (\sqrt{2} + \sqrt{6})i$; $b = -2\sqrt{6}$; $c = \overline{a}$
0,5	1) a) Montrer que $a = \left(-\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)c$
0,5	b) Montrer que A est l'image de C par la rotation de centre O et d'angle $\frac{7\pi}{6}$
0,5	c) En déduire que 2 $arg(a) \equiv \frac{7\pi}{6}[2\pi]$
0,5	ů
	2) Soit T la tarnslation de vecteur \overrightarrow{BA}
0,5	a) Montrer que $d=2\sqrt{2}$ est l'affixe du point D l'image de C par T
0,5	b) Vérifier que $c - b = i(a - b)$ puis en déduire la nature du triangle ABC
0,5	c) Déduire que le quadrilatère ABDC est un carré

	Exercice 3 (4 points):
	A) On considère dans \mathbb{C} l'équation $(E): z^2 - 2(\sqrt{2} - \sqrt{6})z + 16 = 0$
0,5	1) Vérifier que le discriminant de (E) est $\Delta = -4(\sqrt{6} + \sqrt{2})^2$
0,5	2) En déduire les solutions de (E)
0,0	B) Dans le plan complexe rapporté au repère orthonormé , considérons les
	points $A(a)$; $B(b)$; $C(c)$; $D(d)$ tel que : $a = \sqrt{2} - \sqrt{6} + (\sqrt{2} + \sqrt{6})i$; $b = -2\sqrt{6}$; $c = \overline{a}$
0,5	1) a) Montrer que $a = \left(-\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)c$
0,5	b) Montrer que A est l'image de C par la rotation de centre O et d'angle $\frac{7\pi}{6}$
0,5	c) En déduire que 2 $arg(a) \equiv \frac{7\pi}{6}[2\pi]$
0,5	ů
	2) Soit T la tarnslation de vecteur \overrightarrow{BA}
0,5	a) Montrer que $d=2\sqrt{2}$ est l'affixe du point D l'image de C par T
0,5	b) Vérifier que $c - b = i(a - b)$ puis en déduire la nature du triangle ABC
0,5	c) Déduire que le quadrilatère ABDC est un carré

	Exercice 3 (4 points):
	A) On considère dans \mathbb{C} l'équation $(E): z^2 - 2(\sqrt{2} - \sqrt{6})z + 16 = 0$
0,5	1) Vérifier que le discriminant de (E) est $\Delta=-4ig(\sqrt{6}+\sqrt{2}ig)^2$
0,5	2) En déduire les solutions de (E)
0,3	B) Dans le plan complexe rapporté au repère orthonormé , considérons les
	points $A(a)$; $B(b)$; $C(c)$; $D(d)$ tel que : $a = \sqrt{2} - \sqrt{6} + (\sqrt{2} + \sqrt{6})i$; $b = -2\sqrt{6}$; $c = \overline{a}$
0,5	1) a) Montrer que $a = \left(-\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)c$
0,5	b) Montrer que A est l'image de C par la rotation de centre O et d'angle $\frac{7\pi}{6}$
0,5	c) En déduire que 2 $arg(a) \equiv \frac{7\pi}{6}[2\pi]$
	2) Soit T la tarnslation de vecteur \overrightarrow{BA}
0,5	a) Montrer que $d=2\sqrt{2}$ est l'affixe du point D l'image de C par T
0,5	b) Vérifier que $c - b = i(a - b)$ puis en déduire la nature du triangle ABC
0,5	c) Déduire que le quadrilatère ABDC est un carré

Dans le plan complexe rapporté au repère orthonormé, considérons les points A(a); B(b); C(c); D(d) tel que: a = 1 + i; $b = \overline{a}$; c = -1 + i et d = -a

at
$$d = -a$$

et
$$d = -a$$

et
$$d = -a$$

$$d = -a$$

$$d = -a$$

$$a = -a$$

$$e OA = OC$$

1) a) Déterminer la forme trigonométrique de a et c et vérifier que OA = OCb) En déduire que les points A : B : C et D appartenant au même cercle (C) et

déterminer le centre et le rayon du cercle (C) 2) a) Montrer que b-a=i(c-a) et déduire la nature du triangle ABC

b) Déduire que B est l'image du point C par la rotation R de centre A et d'angle
$$\frac{\pi}{2}$$

d) Déduire que le quadrilatère ABDC est un carré

e le quadrilatere ABDC est un carre e le point E d'affixe
$$e = 1 + 2i$$

c) Déterminer l'image du point B par la tarnslation T de vecteur \overrightarrow{AC}

3) On considére le point E d'affixe e = 1 + 2i

a) Vérifier que
$$\frac{b-a}{e-a} = -2$$

argument θ tel que $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$

b) En déduire que B est l'image de E par l'homothétie h de centre A et de rapport -2

4) Une urne contient 10 boules indiscernables au toucher, six boules portant les nombres complexes
$$a$$
; b ; c ; d ; 1 $et - 1$ et quatre boules portant les nombres

complexes $i:-i:-\sqrt{2}$ et $\sqrt{2}$ On tire au hasard et simultanément deux boules de cette urne

a) Calculer
$$P(A)$$
 où A" Les boules tirées portant des nombres réels "

b) Calculer P(B) où B: "Les boules tirées portant des nombres complexes dont un

argument
$$\theta$$
 tel que $-\frac{n}{2} \le \theta \le \frac{n}{2}$
c) Calculer $P(C)$ où C : "Parmi les boules tirées au moins une boule portant un

nombre complexe dont le module est égale à
$$\sqrt{2}$$
 "
d) Calculer $P_B(A)$; la probabilité de A sachant que l'évènement B est réalisé.

Les événements A et B sont ils indépendents 2 instifien vertre réponse 2

Dans le plan complexe rapporté au repère orthonormé, considérons les points A(a); B(b); C(c); D(d) tel que: a = 1 + i; $b = \overline{a}$; c = -1 + i et d = -a

at
$$d = -a$$

et
$$d = -a$$

et
$$d = -a$$

$$d = -a$$

$$d = -a$$

$$a = -a$$

$$e OA = OC$$

1) a) Déterminer la forme trigonométrique de a et c et vérifier que OA = OCb) En déduire que les points A : B : C et D appartenant au même cercle (C) et

déterminer le centre et le rayon du cercle (C) 2) a) Montrer que b-a=i(c-a) et déduire la nature du triangle ABC

b) Déduire que B est l'image du point C par la rotation R de centre A et d'angle
$$\frac{\pi}{2}$$

d) Déduire que le quadrilatère ABDC est un carré

e le quadrilatere ABDC est un carre e le point E d'affixe
$$e = 1 + 2i$$

c) Déterminer l'image du point B par la tarnslation T de vecteur \overrightarrow{AC}

3) On considére le point E d'affixe e = 1 + 2i

a) Vérifier que
$$\frac{b-a}{e-a} = -2$$

argument θ tel que $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$

b) En déduire que B est l'image de E par l'homothétie h de centre A et de rapport -2

4) Une urne contient 10 boules indiscernables au toucher, six boules portant les nombres complexes
$$a$$
; b ; c ; d ; 1 $et - 1$ et quatre boules portant les nombres

complexes $i:-i:-\sqrt{2}$ et $\sqrt{2}$ On tire au hasard et simultanément deux boules de cette urne

a) Calculer
$$P(A)$$
 où A" Les boules tirées portant des nombres réels "

b) Calculer P(B) où B: "Les boules tirées portant des nombres complexes dont un

argument
$$\theta$$
 tel que $-\frac{n}{2} \le \theta \le \frac{n}{2}$
c) Calculer $P(C)$ où C : "Parmi les boules tirées au moins une boule portant un

nombre complexe dont le module est égale à
$$\sqrt{2}$$
 "
d) Calculer $P_B(A)$; la probabilité de A sachant que l'évènement B est réalisé.

Les événements A et B sont ils indépendents 2 instifien vertre réponse 2

Dans le plan complexe rapporté au repère orthonormé, considérons les points A(a); B(b); C(c); D(d) tel que: a = 1 + i; $b = \overline{a}$; c = -1 + i et d = -a

at
$$d = -a$$

et
$$d = -a$$

et
$$d = -a$$

$$d = -a$$

$$d = -a$$

$$a = -a$$

$$e OA = OC$$

1) a) Déterminer la forme trigonométrique de a et c et vérifier que OA = OCb) En déduire que les points A : B : C et D appartenant au même cercle (C) et

déterminer le centre et le rayon du cercle (C) 2) a) Montrer que b-a=i(c-a) et déduire la nature du triangle ABC

b) Déduire que B est l'image du point C par la rotation R de centre A et d'angle
$$\frac{\pi}{2}$$

d) Déduire que le quadrilatère ABDC est un carré

e le quadrilatere ABDC est un carre e le point E d'affixe
$$e = 1 + 2i$$

c) Déterminer l'image du point B par la tarnslation T de vecteur \overrightarrow{AC}

3) On considére le point E d'affixe e = 1 + 2i

a) Vérifier que
$$\frac{b-a}{e-a} = -2$$

argument θ tel que $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$

b) En déduire que B est l'image de E par l'homothétie h de centre A et de rapport -2

4) Une urne contient 10 boules indiscernables au toucher, six boules portant les nombres complexes
$$a$$
; b ; c ; d ; 1 $et - 1$ et quatre boules portant les nombres

complexes $i:-i:-\sqrt{2}$ et $\sqrt{2}$ On tire au hasard et simultanément deux boules de cette urne

a) Calculer
$$P(A)$$
 où A" Les boules tirées portant des nombres réels "

b) Calculer P(B) où B: "Les boules tirées portant des nombres complexes dont un

argument
$$\theta$$
 tel que $-\frac{n}{2} \le \theta \le \frac{n}{2}$
c) Calculer $P(C)$ où C : "Parmi les boules tirées au moins une boule portant un

nombre complexe dont le module est égale à
$$\sqrt{2}$$
 "
d) Calculer $P_B(A)$; la probabilité de A sachant que l'évènement B est réalisé.

Les événements A et B sont ils indépendents 2 instifien vertre réponse 2