Fonctions exponentielles

2BACS-2020/2021

Définition

- \checkmark La fonction réciproque de $m{ln}$ s'appelle la fonction exponentielle népérienne notée $m{exp}$
- ✓ Notation : $\forall x \in \mathbb{R} \quad exp(x) = e^x$
- ✓ La fonction est exp définie sur $\mathbb R$ et on a : $\forall x \in \mathbb R$ $e^x > 0$

$$\forall x \in \mathbb{R} \quad \forall y \in]0, +\infty[\qquad e^x = y \iff x = \ln(y) \\ exp(0) = 1 \qquad exp(1) = e$$

propriétés

- $\checkmark exp$ est une fonction continue et dérivable sur ${\mathbb R}$
- $\checkmark exp$ est une fonction strictement croissante sur $\mathbb R$
 - $e^x > e^y \iff x > y$
 - $e^x = e^y \iff x = y$

$$\forall x \in \mathbb{R}$$
 $ln(e^x) = x$ $\forall x \in]0, +\infty[$ $e^{ln(x)} = x$

Propriétés algébriques

- $e^{x+y} = e^x \times e^x \quad ; \quad e^{-x} = \frac{1}{e^x}$
- $e^{x-y} = \frac{e^x}{e^y}$; $e^{rx} = (e^x)^r$ $r \in \mathbb{Q}$

Les limites :

$\lim_{x\to-\infty}e^x=0$	$\lim_{x\to+\infty}e^x=+\infty$	
$\lim_{x\to-\infty}xe^x=0$	$\lim_{x\to+\infty}\frac{e^x}{x}=+\infty$	
$\lim_{x\to-\infty}x^ne^x=0 n\in\mathbb{N}$	$\lim_{x\to+\infty}\frac{e^x}{x^n}=+\infty \qquad n\in\mathbb{N}$	
$\lim_{x\to 0}\frac{e^x-1}{x}=1$		

La dérivation :

- $\forall x \in \mathbb{R} \quad (e^x)' = e^x$
- \checkmark Si u est dérivable sur un intervalle I alors la fonction $x \to e^{u(x)}$ est dérivable sur I et on a : $(e^{u(x)})' = u'(x) \times e^{u(x)}$ $\forall x \in I$

La fonction exponentielle de base a :

Définition	$exp_a(x) = a^x = e^{xln(a)}$	
	avec $oldsymbol{a}$ un réel strictement positive et $$ différent de $$ 1	
La dérivée	$\forall x \in \mathbb{R} \qquad (a^x)' = (\ln a)a^x$	
Cas particulière	La fonction définie sur $\mathbb R$ par : $ au o 10^x$	
a = 10	$\forall x \in \mathbb{R} \forall y \in]0, +\infty[\qquad 10^x = y \iff x = log(y)$	

Exercices d'applications et de réflexions : fonctions exponentielles

PROF: ATMANI NAJIB

2ème BAC Sciences Physiques et Sciences de la Vie et de la Terre (2BAC PC et SVT)

FONCTIONS EXPONENTIELLES

Exercice1: Résoudre les équations et inéquations suivantes dans \mathbb{R} :

1)
$$\exp\left(\frac{x+5}{2x+3}\right) = \exp\left(\frac{1}{x-1}\right)$$
 2) $\exp\left(2x+1\right) \le \exp\left(\frac{6}{x}\right)$

Exercice2: Résoudre les équations et inéquations suivantes dans \mathbb{R} :

$$1) e^{1-x} \times e^{2x} = e$$

$$2) \frac{e^{2-x}}{e^{1+2x}} = e^{x-1}$$

$$3) e^{2x} - 5e^x + 6 = 0$$

3)
$$e^{2x} - 5e^x + 6 = 0$$
 4) $e^{x^2} \cdot (e^x)^3 = (e^{-x})^5 \cdot e^{-7}$

$$5)e^{2x-3} - (e+1)e^{x-2} + 1 < 0$$

Exercice3 : Déterminer les limites suivantes :

1)
$$\lim_{x \to -\infty} (2x-1)e^x$$
 2) $\lim_{x \to +\infty} \frac{e^x + 3}{x}$ 3) $\lim_{x \to +\infty} \frac{e^x + 3x}{x^3}$

$$2) \lim_{x \to +\infty} \frac{e^x + 3}{x}$$

$$3) \lim_{x\to +\infty} \frac{e^x + 3x}{x^3}$$

4)
$$\lim_{x \to -\infty} \frac{e^x + 1}{e^x + 2}$$
 5) $\lim_{x \to -\infty} e^{-x+1}$ 6) $\lim_{x \to +\infty} e^{-x+1}$

$$5) \lim_{x\to -\infty} e^{-x+1}$$

$$6) \lim_{x\to +\infty} e^{-x+1}$$

7)
$$\lim_{x \to -\infty} e^x + e^{-x}$$

8)
$$\lim e^{\frac{-x+1}{x^3+5}}$$

7)
$$\lim_{x \to -\infty} e^x + e^{-x}$$
 8) $\lim_{x \to +\infty} e^{\frac{-x+1}{x^3+5}}$ 9) $\lim_{x \to +\infty} \frac{e^x - 1}{e^x + 1}$

10)
$$\lim_{x \to +\infty} 2x - e^x$$
 11) $\lim_{x \to +\infty} \frac{e^x - 1}{x^2}$ 12) $\lim_{x \to +\infty} \frac{e^x}{x^2 + 3x}$

$$11) \lim_{x\to +\infty} \frac{e^x - 1}{x^2}$$

$$12) \lim_{x \to +\infty} \frac{e^x}{x^2 + 3x}$$

13)
$$\lim_{x \to +\infty} 3x^3 - e^x$$
 14) $\lim_{x \to +\infty} \frac{e^x + 3x}{x^3}$

15)
$$\lim_{x \to +\infty} \frac{e^{2x}}{x^3}$$
 (on pose : $2x = X$) 16) $\lim_{x \to +\infty} \frac{e^{3x}}{x}$

$$16) \lim_{x \to +\infty} \frac{e^{3x}}{x}$$

17)
$$\lim_{x \to +\infty} \frac{e^{2x}}{x^3 + x + 1}$$
 18) $\lim_{x \to -\infty} (3x - 1)e^x$

$$18) \lim_{x \to -\infty} (3x - 1)e^x$$

19)
$$\lim_{x \to -\infty} (x^5 - 4x^3) e^x$$
 20) $\lim_{x \to 0^-} \frac{1}{x} e^{\frac{1}{x}}$

20)
$$\lim_{x\to 0^-} \frac{1}{x} e^{\frac{1}{x}}$$

21)
$$\lim_{x \to -\infty} (x^3 - 2x)e^{2x}$$
 22) $\lim_{x \to 0} \frac{e^{2x} - 1}{3x}$

22)
$$\lim_{x\to 0} \frac{e^{2x}-1}{3x}$$

23)
$$\lim_{x \to +\infty} x \left(e^{\frac{1}{x}} - 1 \right)$$
 24) $\lim_{x \to 1} \frac{e^{1-x} - 1}{x - 1}$

24)
$$\lim_{x \to 1} \frac{e^{1-x} - 1}{x - 1}$$

25)
$$\lim_{x\to 0} \frac{e^{-x}-1}{x}$$

25)
$$\lim_{x\to 0} \frac{e^{-x}-1}{x}$$
 26) $\lim_{x\to 0} \frac{e^{x+1}-e}{x}$

Exercice4 : Déterminer les dérivées des fonctions

suivantes : 1) $f(x) = e^{\sqrt{2x+1}}$

2)
$$g(x) = e^{-2x^2} - 3e^{3x+1}$$
 3) $h(x) = e^{\frac{x+1}{-x+3}}$

4)
$$f(x) = (e^x - 4)\sqrt{e^x - 1}$$

Exercice5 : Déterminer les primitives des

fonctions suivantes : 1) $f(x) = \frac{e^{\sqrt{x}}}{\sqrt{x}}$

2)
$$g(x) = (e^x)^2$$
 3) $h(x) = \frac{e^{\arctan x}}{1 + x^2}$

Exercice6 : Déterminer une primitive des fonctions suivantes:

1)
$$I = \mathbb{R}; f(x) = 2e^{3x} - e^{-x}$$

2)
$$I =]0; +\infty[; f(x) = \frac{e^{2x}}{(e^{2x} - 1)^2}$$

3)
$$I = \mathbb{R}; f(x) = e^x (e^x - 1)^3$$

4)
$$I = [0; \pi]; f(x) = \sin xe^{\cos x}$$

5)
$$f(x) = \frac{e^x - 1}{e^x - x}$$
 $I =]0; +\infty[$

Exercice7: Considérons la fonction f définie par :

$$f(x) = (x-1)e^x$$

- 1)Etudier les variations de f et dresser son tableau de variation.
- 2) Etudier les branches infinies de la courbe Cf au voisinage de $+\infty$
- 3) Etudier la concavité de la courbe Cf
- 4) Construire la courbe C_f .

Exercice8: Considérons la fonction f définie

par:
$$f(x) = x-1+\frac{3}{e^x+1}$$

1) déterminer D_f et calculer les limites aux

bornes de D_f

- 2)Etudier les variations de f et dresser son tableau de variation.
- 3)montrer que : $(\forall x \in \mathbb{R})$; $f(x) = x + 2 \frac{3e^x}{e^x + 1}$
- 4) Etudier les branches infinies de la courbe *Cf* Et étudier la position de la courbe *Cf* avec les asymptotes obliques

Exercice9: Considérons la fonction f définie par :

$$f(x) = (e^x - 4)\sqrt{e^x - 1}$$

1) déterminer D_f et calculer les limites aux

bornes de D_f

- 2)montrer que : $(\forall x \in \mathbb{R}_*^+) \frac{f(x)}{x} = \frac{e^x 4}{\sqrt{e^x 1}} \cdot \frac{e^x 1}{x}$
- Etudier la dérivabilité de la fonction f à droite de 0 et interpréter géométriquement le résultat obtenu
- 4) montrer que : $(\forall x \in \mathbb{R}_{*}^{+}) f'(x) = \frac{3e^{x}(e^{x}-2)}{2\sqrt{e^{x}-1}}$
- 5)Etudier les variations de f et dresser son tableau de variation.
- 6) Etudier les branches infinies de la courbe C_f Au voisinage de $+\infty$
- 7)calculer : $f(2\ln 2)$ et construire la courbe C_f .

Exercice10: Considérons la fonction *f* définie

par :
$$f(x) = \sqrt{e^{-x} - e^{-2x}}$$

1) déterminer D_f et calculer les limites aux

bornes de D_f

- Etudier la continuité et la dérivabilité de la fonction f à droite de 0 et interpréter géométriquement le résultat obtenu
- 3)Etudier les variations de f et dresser son tableau de variation.
- 4) construire la courbe C_f .

Exercice11 : Considérons la fonction f définie

par:
$$f(x) = \frac{e^x}{\sqrt{1 - e^{2x}}}$$

1) déterminer D_f et calculer les limites aux

bornes de D_f

- 2)Etudier les variations de f et dresser son tableau de variation.
- 3) montrer que f admet une fonction réciproque définie sur un intervalle J que l'on déterminera
- 4) déterminer : $f^{-1}(x) \forall x \in J$

Exercice12: Considérons la fonction f définie sur

$$\mathbb{R}$$
 par : $f(x) = 1 - \ln(1 + e^{-x})$ et soit (C) la courbe

De f dans un repère orthonormé $(o; \vec{i}, \vec{j})$

1)a)montrer que : $\lim_{x \to +\infty} f(x) = 1$ et interpréter

géométriquement le résultat

- b) montrer que : $\lim_{x \to \infty} f(x) = -\infty$
- 2)a)vérifier que: $\forall x \in \mathbb{R}$; $f(x) = x + 1 \ln(1 + e^x)$
- b) en déduire la droite (D) d'équation : y = x+1
- est une asymptote oblique a la courbe Cf au voisinage de $-\infty$
- c) étudier la position de la courbe Cf avec la droite (D)
- 3)a) montrer que : $\forall x \in \mathbb{R}$; $f'(x) = \frac{1}{1 + e^x}$

- b) Etudier les variations de f et dresser son tableau de variation.
- c) Etudier la concavité de Cf
- d) montrer que la courbe Cf coupe l'axe des abscisses en un point à déterminer
- 4) Construire la courbe C_f dans le repére $(O; \vec{i} \ \vec{j})$
- 5) a)montrer que f admet une fonction réciproque définie sur un intervalle J que l'on déterminera
- b) déterminer : $f^{-1}(x) \ \forall x \in J$

Exercice13:

Partie 1 : Considérons la fonction f définie sur \mathbb{R} +

par:
$$f(x) = (x+2)e^{\frac{-2}{x}}$$
 si $x > 0$ et $f(0) = 0$

- 1) Etudier la continuité et la dérivabilité de la fonction f à droite de 0.
- 2) Interpréter géométriquement le résultat obtenu.
- 3) Déterminer la limite en +∞
- 4) Déterminer la fonction dérivée de la fonction *f* puis dresser le tableau de variation de f.
- 5) a) Montrer que $(\forall t > 0)$ $0 < e^{-t} + t 1 < \frac{t^2}{2}$
- b) En déduire que : $(\forall x > 0)$

$$\frac{-4}{x} \prec f(x) - x \prec \frac{4}{x^2} - \frac{2}{x}$$

- c) Déterminer la nature de la branche infinie de la courbe Cf au voisinage de +∞
- 6) Construire la courbe C_f .

Partie 2:

Considérons la fonction f_n définie sur \mathbb{R}^+ par :

$$f_n(x) = (x+2n)e^{\frac{-2}{x}}$$
 si $x > 0$ et $f_n(0) = 0$ où $n \in \mathbb{N}^*$

- 1) a) Etudier la continuité et la dérivabilité de la fonction f_n à droite de 0.
- b) Déterminer la limite en +∞
- c) Déterminer la fonction dérivée de la fonction f_n

puis dresser le tableau de variation de f_n .

2) Montrer que l'équation $f_n(x) = \frac{2}{x}$

admet une solution unique α_n dans]0, + ∞ [

3)a) Montrer que $(\forall x > 0)$

$$f_{n+1}(x) - \frac{2}{n+1} > f_n(x) - \frac{2}{n}$$

- b) En déduire la monotonie de $(\alpha_{_n})_{_n}$
- c) Montrer que la suite $(\alpha_n)_n$ est convergente et

que
$$\lim_{n\to+\infty} (\alpha_n)_n = 0$$

Exercice14: Résoudre les équations et inéquations suivantes dans \mathbb{R} :

1)
$$5^x = 15$$
 2) $3^{2x} \ge 5^{1-x}$ 3) $7^{x+1} - 7^{-x} < 6$

Exercice15: Résoudre les équations et inéquations suivantes dans \mathbb{R} :

1)
$$2^{x+1} = 8^x$$
 2) $3^x = 12$ 3) $5 \times 2^x + 2^{x+1} - 336 = 0$

4)
$$100^x + 40 = 14 \times 10^x$$

5)
$$2^{x-1} > 4^x$$
 5) $(0,5)^{2x} \ge (0,5)^{x+1}$

Exercice16: Déterminer les primitives de la

fonction suivante : $f(x) = 3^{x-2}$

Exercice17: Soit La fonction f définie par :

$$f(x) = 4^x - 2^{x+1}$$
 1) déterminer D_f

- 2) calculer les limites aux bornes de D_{f}
- 3)Etudier les variations de f et dresser son tableau de variation.
- 4) Etudier les branches infinies de la courbe Cf
- 5) construire la courbe C_f dans un repére $(o; \vec{i} \ \vec{j})$

Exercice 18: Soit La fonction f définie sur \mathbb{R}^+ par : $f: \mathbb{R}^+ \to \mathbb{R}$

$$x \rightarrow x^x$$
, si $x \neq 0$ et $f(0) = 0$

- 1) Etudier la continuité de la fonction f à droite de 0.
- 2)Etudier la dérivabilité de la fonction f à droite
- 3)Etudier les variations de f et dresser son tableau de variation.

4)Déterminer la nature de la branche infinie de la courbe Cf au voisinage de $+\infty$.

5)Tracer la courbe Cf.

6) Résoudre dans \mathbb{R} , l'équation f(x) = x

7)Soit la suite $(u_n)_n$ définie par : $u_0 = \frac{1}{e}$

et $(\forall n \in \mathbb{N})(u_{n+1} = f(u_n)).$

a)Montrer que : $(\forall n \in \mathbb{N})(u_n \leq 1)$

b)Etudier la monotonie de la suite $(u_n)_n$; puis en déduire qu'elle convergente.

c) Déterminer la limite de la suite $(u_n)_n$

Exercice 19 : Soit $n \in \mathbb{N}*$; considérons la fonction f_n définie sur [1, $+\infty$ [par :

$$f_n(x) = \frac{1}{n!} \frac{(\ln x)^n}{x^2}$$
 si $x > 0$ et $f_n(0) = 0$

et (C_n) sa courbe représentative dans un repère orthonormé $\mathcal{R}(0, \vec{i}, \vec{j})$.

1. Donner le tableau de variation de f_1 .

2. Déterminer l'équation de la tangente (T_1) à la courbe (C_1) en point d'abscisse 1.

3. Construire la courbe (C_1) et la tangente (T_1) dans le repère $\mathcal{R}(O, i\vec{\cdot}, j\vec{\cdot})$.

4. Dresser le tableau de variation de la fonction f_n .

5. a) Etudier sur l'intervalle [1, +∞[le signe de :

 $f_2(x) - f_1(x)$

b) En déduire les positions relatives des deux courbes (C_1) et (C_2) ; puis construire (C_2)

6. Considérons la suite $\left(u_{_{n}}
ight)_{_{n\geq1}}$ où $u_{_{n}}$ est la valeur

maximale de la fonction f_n .

a) Vérifier que $(\forall n \in \mathbb{N}*)$: $u_n = \frac{1}{n!} \left(\frac{n}{2e}\right)^n$

b) Pour $x \in]1, +\infty[$; calculer $\frac{f_{n+1}(x)}{f_n(x)}$

c) Montrer que : $(\forall n \in \mathbb{N}*)$ $(u_{n+1} = \frac{1}{2} f_n(e^{\frac{n+1}{2}}))$

d) En déduire que : $(\forall n \in \mathbb{N}*) (u_n \leq \frac{1}{e} \frac{1}{2^n})$

Et en déduire $\lim_{n\to+\infty} u_n$

« C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices Que l'on devient un mathématicien

Baccalauréat Sciences Économiques

Session: Normale Juin 2019

MATHÉMATIQUES

DURÉE DE L'ÉPREUVE : **2 heures**

INSTRUCTIONS GENERALES

- ✓ L'utilisation de la calculatrice non programmable est autorisée ;
- ✓ Le candidat peut traiter les exercices de l'épreuve suivant l'ordre qui lui convient ;
- ✓ L'utilisation de la couleur rouge lors de la rédaction des solutions est à éviter;

COMPOSANTES DU SUJET

Ce sujet comporte 2 exercices et un problème :
— Exercice 1 : Les suites numériques 4 points
— Exercice 2 : Calculs des probabilités 4 points
— problème : Problème d'analyse

_	-	_	
Examen	du	Bacca	lauréat

Session normal 2019

Exercice 1: (4 pts)

Soit $(u_n)_{n\in\mathbb{N}}$ la suite numérique définie par : $u_0=2$ et $(\forall n\in\mathbb{N});\ u_{n+1}=\frac{1}{2}u_n+\frac{1}{7}u_n$

0.5 pt 1 - Calculer u_1 et u_2 .

0.75 pt

0.25 pt

0.25 pt

0.5 pt

0.5 pt

0.5 pt

1 pt

1 pt

1 pt

1 pt

0.5 pt

0.5 pt

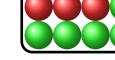
- **0.75** pt **2 a)** Montrer par récurrence que : $(\forall n \in \mathbb{N})$ $u_n \frac{2}{7} \leq 0$.
 - **b)** Vérifier que pour tout n de \mathbb{N} : $u_{n+1} u_n = -\frac{1}{2}\left(u_n \frac{2}{7}\right)$, puis en déduire que $(u_n)_{n \in \mathbb{N}}$ est une suite décroissante.
 - **3** Montrer que $(u_n)_{n\in\mathbb{N}}$ est une suite convergente.
 - **4** On pose pour tout n de \mathbb{N} : $v_n = u_n \frac{2}{7}$
 - a) Calculer v_0 ...
 - b) Montrer que (v_n) est une suite géométrique de raison $\frac{1}{2}$.
 - c) En déduire que pour tout n de \mathbb{N} : $u_n = \left(\frac{12}{7}\right) \left(\frac{1}{2}\right)^n + \frac{2}{7}$.
 - **5** Calculer $\lim_{n \to +\infty} u_n$.

Exercice 2: (4 pts)

Donner les résultats sous forme de fraction

Une urne contient 8 boules indiscernables au toucher dont **cinq** boules sont vertes et **trois** sont rouges.

On tire au hasard **successivement** et **sans remise** deux boules de l'urne.



On considère les événements suivants :

A : " Les deux boules tirées sont rouges ".

B: " La première boule tirée est rouge ".

C: " La deuxième boule tirée est verte ".

- **1** Montrer que $p(A) = \frac{6}{56}$ et $p(B) = \frac{21}{56}$.
- **2** Calculer p(C).
- **3** Calculer $p(B \cap C)$.
- 4 Les événements B et C sont-ils indépendants? justifier la réponse.

Problème: (12 pts)

PARTIE I -

On considère la fonction g définie sur \mathbb{R} par : $g(x) = e^x - x$

- 1 Calculer g'(x) pour tout $x ext{ de } \mathbb{R}$.
- **2** a) étudier le signe de g'(x) sur \mathbb{R} .

	Examen du Baccalauréat Session normal 2019		
	b) Calculer $g(0)$ puis dresser le tableau de variations de g .(le calcul des limites n'est pas		
0.5 pt	demandé).		
0.5 pt	c) En déduire que pour tout x de \mathbb{R} ; $g(x) \leq 1$.		
	PARTIE II -		
	On considère la fonction f définie sur \mathbb{R} par $: f(x) = (x+1)e^{-x} + (x-1)$		
	et on note $(\mathcal{C}_{\{})$ sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$.		
1 pt	1 - a) Montrer que $\lim_{x \to -\infty} f(x) = -\infty$ et calculer $\lim_{x \to -\infty} \frac{f(x)}{x}$.		
0.5 pt	b) Donner une interprétation graphique du résultat obtenu.		
1 pt	2 - a) Calculer $\lim_{x \to +\infty} f(x)$ et calculer $\lim_{x \to +\infty} (f(x) - (x-1))$.		
0.5 pt	b) Donner une interprétation graphique du résultat obtenu.		
1 pt	3 - a) Montrer que pour tout x de \mathbb{R} : que $f'(x) = \frac{g(x)}{e^x}$.		
0.5 pt	b) En déduire que f est strictement croissante sur \mathbb{R} .		
0,5 pt	c) Dresser son tableau de variation.		
1 pt	d) Donner l'équation de la tangente (T) au point d'abscisse 0 .		
	e) Résoudre l'équation $f(x) = x - 1$, puis en déduire les coordonnées du point d'intersection		
1 pt	de (C_f) avec la droite (Δ) d'équation : $y = x - 1$.		
0,5 pt	4 - a) Montrer que pour tout x de \mathbb{R} : $f''(x) = e^{-x}(x-1)$.		
1 pt	b) Montrer que la courbe (C_f) admet un point d'inflexion dont on déterminera ses coordonnées.		
	5 - Dans la figure ci-dessous (C_f) est la courbe représentative de la fonction f dans le repère $(O; \vec{i}, \vec{j})$.		
1 pt	a) En utilisant une intégration par parties, montrer que : $\int_{-1}^{1} (x+1)e^{-x} dx = e - \frac{3}{e}$.		
0,5 pt	b) Calculer l'aire de la partie hachurée de la figure. J_{-1}		
	$oxed{FIN}$		
	MTMgroup 23/96 MAROC		

T

Baccalauréat Sciences Économiques Session : Rattrapage 2019

juin 2019

MATHÉMATIQUES

Série : Sciences Économiques Et Gestion Comptable

DURÉE DE L'ÉPREUVE : 2 heures

INSTRUCTIONS GENERALES

- ✓ L'utilisation de la calculatrice non programmable est autorisée ;
- ✓ Le candidat peut traiter les exercices de l'épreuve suivant l'ordre qui lui convient ;
- ✓ L'utilisation de la couleur rouge lors de la rédaction des solutions est à éviter;

COMPOSANTES DU SUJET

L'épreuve est composée de 3 exercices :
— Exercice 1 : Suites numériques
— Exercice 2 : Calcul de probabilités 4 points
— Exercice 3: Etude d'une fonction numérique et calcul intégral 11,5 points

♠ ln désigne la fonction logarithme népérien.

	Examen du Baccalauréat Session Rattrapage 2019			
	Exercice 1 : (4,5 pts)			
	Soit (u_n) la suite numérique définie par : $u_0 = 1$ et $u_{n+1} = \frac{u_n - 9}{u_n - 5}$ pour tout $n \in \mathbb{N}$			
$0,5~\mathrm{pt}$	1 - Calculer u_1 et u_2			
$0,75~\mathrm{pt}$	2 - Montrer par récurrence que : $(\forall \mathbf{n} \in \mathbb{N}); u_n < 3$			
$0,5~\mathrm{pt}$	3 - a) Vérifier que : $u_{n+1} - u_n = \frac{(u_n - 3)^2}{5 - u_n}$			
0,5 pt	b) Montrer que (u_n) est une suite croissante			
$0,\!25~\mathrm{pt}$	4 - En déduire que la suite (u_n) est une suite est convergente 5 - On pose pour tout n de \mathbb{N} : $v_n = \frac{-2u_n + 4}{u_n - 3}$			
$0,\!25~\mathrm{pt}$	a) Vérifier que $v_0 = -1$			
$0,5~\mathrm{pt}$	b) Montrer que pour tout n de \mathbb{N} : $v_{n+1} = \frac{-u_n + 1}{u_n - 3}$			
$0,5 \mathrm{pt}$	c) Montrer que v_n est une suite arithmétique de raison 1			
$0,\!25~\mathrm{pt}$	6 - a) Montrer que pour tout n de \mathbb{N} : $u_n = \frac{3v_n + 4}{v_n + 2}$			
$0,\!25~\mathrm{pt}$	b) En déduire que pour tout n de \mathbb{N} $u_n = \frac{3n+2}{n+1}$			
0,25 pt	c) Calculer $\lim_{n\to+\infty} u_n$			
	Exercice 2 : (4 pts) (Donner les résultats sous forme de fraction)			
	Un sac S_1 contient deux boules blanches, une boule rouge et trois boules			
	vertes.			
	Un autre sac S_2 contient une boule blanche, deux boules rouges et une boule			
	verte.			
	Toutes les boules sont indiscernables au toucher.			
	On considère l'expérience suivante : " on tire une boule du sac S_1 puis on tire			
	une boule du sac S_2 "			
	On considère les événements suivants :			
	A : " Les deux boules tirées sont blanches "			
	B : " Les deux boules tirées sont de couleurs différentes "			
	MTMgroup 25/96 MAROC			

		ı du Baccalauréat	Session Rattrapage 2019
1,5 pt	1 - Mo	ontrer que $p(A) = \frac{1}{12}$	
	2 - Me	ontrer que $p(\bar{B}) = \frac{7}{24}$	
1,5 pt	$(\bar{B} \text{ est l'événement contraire de B}) \text{ et en déduire } p(B)$		
1 pt	3 - Ca	alculer $p(A \cup B)$	
	Exe	rcice 3: (11,5 pts)	
	On cons	idère la fonction numérique f de la variable ré	elle x définie sur $]0; +\infty[$ par :
	f(x) =	$= (1 - \ln x) \ln x$	
	et soit (C_f) sa courbe représentative dans un repère orthonormé $(O, \vec{\imath}, \vec{\jmath})$		
	1 - Ca	alculer $\lim_{\substack{x\to 0\\x>0}} f(x)$ et	
		Calculer $\lim_{x \to +\infty} f(x)$ et	
	b)	On admet que $\lim_{\substack{x\to 0\\x\to 0}} \left(\frac{(\ln x)^2}{x}\right) = 0$ et Ca	clouder $\lim_{x \to +\infty} \frac{f(x)}{x} \lim_{x \to +\infty} \frac{f(x)}{x}$ et
1 pt		interpréter géométriquement le résult	
1 pt	3 - a)	Montrer que, pour tout x de $]0; +\infty[$	$f'(x) = \frac{1}{x} (1 - 2 \ln x)$
		Montrer que f est croissante sur $]0;$	
1,25 pt		$\operatorname{sur} \left] \sqrt{e}; +\infty \right[$	
0,5 pt	c)	Calculer $f(\sqrt{e})$ puis dresser le tablea	u de variations de f
	d)	Résoudre l'équation $f(x) = 0$ et en dé	duire les coordonnées des points
1,5 pt		d'intersection de (C_f) avec l'axe des	abscisses.
	e)	Donner l'équation de la tangente (T) à la courbe (C_f) au point
1 pt		d'abscisse $x_0 = 1$	
$0,75~\mathrm{pt}$	4 - a)	Montrer que $f''(x) = \frac{1}{x^2} (2 \ln x - 3)$ p	pour tout x de $]0;+\infty[$
1 pt	b)	Montrer que $A(e^{\frac{3}{2}}; \frac{-3}{4})$ est un point	dinflexion de (C_f)
	5 - Da	ans la figure ci-dessous (C_f) est la courb	pe représentative de f et soit F
	la fonction définie par : $F(x) = -x(x)^2 + 3x \ln x - 3x$		
0,5 pt	a)	Montrer que F est une primitive de j	$f \operatorname{sur}]0; +\infty[$
	MTM	group 26/96	MAROC

\bigcap	Examen	du Baccalauréat	Session Rattrapage 2019
		A partir de la courbe (C_f) ci-dessous,	
0,75 pt		$]0;+\infty[$	
1pt	$\mathbf{c})$	Calculer laire de la partie hachurée.	
		y_{igstar}	
		1	
			$\xrightarrow{3}$ \xrightarrow{A} \xrightarrow{x}
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 4 'x
		$_{-2}$ \mid	
		FIN	
	MTMg	roup 27/96	MAROC