EXERCICE 1:

Partie 1: On considère la fonction numérique g définie par : $g(x) = 2 - x^2 \sqrt{x^2 - 1}$

- Déterminer l'ensemble de définition de D_n
- 2. Vérifier que : $x^6 x^4 4 = (x^2 2)(x^4 + x^2 + 2)$
- 3. Etudier le signe de la fonction g sur D_g

Partie 2: On considère la fonction numérique f de vie sur [-1,1] par : $f(x) = \frac{2x}{\sqrt{x^2+3}} - 1$

- 1. Calculer f'(x) pour tout $x \in [-1, 1]$
- 2. Donner le tableau de variations de f sur [-1,1]
- 3. Calculer f(1), puis étudier le signe de la fonction f sur [-1,1]

Partie 3:

On considère la fonction numérique \boldsymbol{h} définie par :

$$h(x) = \frac{2\sqrt{x^2 - 1}}{x} - x + 1 \quad \text{si} \quad x \in]-\infty; -1[\ \cup\]1; +\infty[$$

$$h(x) = \sqrt{x^2 + 3} \qquad \qquad \text{si} \quad x \in [-1, 1]$$

- 1. Montrer que h est continue en 1 et -1
- Montrer que la courbe (Ch) admet un centre de symétrie I(0,1) sur]-∞;-1[∪]1;+∞[
- 3. Vérifier que $\lim_{x \to +\infty} h(x) = -\infty$; puis montrer que la droite (D): y = -x + 3 est une asymptote oblique de la courbe (C_h) au voisinage de $+\infty$
- En déduire par symétrie que la droite (Δ): y = -x 1 est une asymptote oblique de la courbe (C_h) au voisinage de -∞
- 5. Etudier la dérivabilité de h en 1 ; puis interpréter graphiquement le résultat.
- **6.** Calculer h'(x) pour tout $x \in]-\infty; -1[\cup]1; +\infty[$
- 7. En déduire le signe de h'(x) sur $]-\infty; -1[\cup]1; +\infty[$
- **8.** Calculer h'(x) pour tout $x \in [-1, 1]$
- En déduire le signe de h'(x) sur [-1,1]
- 10. Dresser le tableau de variation de h sur R
- 11. Donner les équations des demi-tangentes à gauche de 1 et à droite de -1
- 12. Montrer qu'il existe un unique réel $\alpha \in [\sqrt{2}; +\infty]$ tel que $h(\alpha) = 0$ et que $2 < \alpha < 3$
- 13. Construire (C_h) , (D) et (Δ) dans le repère $(O; \vec{\imath}; \vec{\jmath})$

Partie 4: Soit k(x) la restriction de h sur l'intervalle $I = [1; +\infty[$

- 1. Montrer que k admet une fonction réciproque k^{-1} définie sur un intervalle J à déterminer
- **2.** Calculer $(k^{-1})'_{(0)}$ en fonction de α
- 3. Tracer (C_{k-1}) dans le repère $(O; \vec{\imath}; \vec{\jmath})$

EXERCICE 2:

- I. Considérons la suite (V_n) définie par : $V_n = \frac{5^{n+1}}{6^n}$ pour tout n de IN
 - 1. Montrer que (V_n) est une suite géométrique dont on précisera la raison et la premier terme .
 - 2. Calculer la limite de la suite (V_n)
- II. Considérons la suite (U_n) définie par : $U_{n+1} = \sqrt{5U_n + 6}$
 - 1. Montrer que $1 \le U_n \le 6$ pour tout n de IN
 - 2. Montrer que (Un) est croissante
 - 3. Montrer que pour tout n de $IN : 6 U_{n+1} \le \frac{5}{6}(6 U_n)$
 - **4.** En déduire que pour tout n de IN: $0 \le 6 U_n \le V_n$, puis calculer la limite de la suite (U_n)
- III. Soit (U_n) une suite géométrique, telle que $U_2 = 3$ et $U_5 = -24$
 - 1. Déterminer la raison de la suite (U_n) pour tout n de IN
 - **2.** On pose: $S_n = \sum_{k=0}^{k=n} U_k = U_0 + U_1 + \dots + U_n$ pour tout n de IN
 - a. Montrer que pour tout n de $IN: S_n = \frac{1}{4} + \frac{(-2)^n}{2}$
 - **b.** Calculer la limite : $\lim_{n \to +\infty} \frac{S_n}{3^n}$