Exercices Noyaux, masse et énergie

Exercice 1

Le constituant principal du soleil est l'hydrogène qui produit la réaction de fusion dont le bilan est

$$4._{1}^{1}H \rightarrow {}_{2}^{4}He + 2._{7}^{a}x$$

- 1. Identifier la particule x. Justifier.
- 2.a-. Calculer l'énergie libérée par la formation d'un noyau d'hélium ⁴₂He
 - b- Déduire l'énergie libérée par une mole d'hélium formée.
- 3. On suppose que toute l'énergie de fusion produite est rayonnée par le soleil. La puissance rayonnée, supposée constante, est $P = 3.9.10^{26} \, \mathrm{W}$
- a. Calculer la perte de masse subie par le soleil en une seconde.
- b. La masse du soleil est $M = 2.10^{30} \, \text{Kg}$; on évalue son âge à $4.6.10^9 \, \text{ans}$. Quelle masse a-t-il perdu depuis qu'il rayonne? Quelle fraction de sa masse actuelle cela représente-t-il?

On donne $m_p = 1.007276u$; $m_{He} = 4.00150u$; $m_e = 0.000549u$; $1u = 931.5 Mev. C^{-2}$; $N = 6.023.10^{23}.mol^{-1}$

Exercice 2

Un isotope du bismuth $^{\text{A}}_{\text{Z}}$ Biest radioactif émetteur $\beta^{\text{-}}$ sa désintégration donne un noyau de polonium $^{210}_{84}$ Po.

- 1. a. Écrire l'équation de la réaction nucléaire de désintégration du bismuth en précisant les lois utilisées.
- 1. b. Cette désintégration est-elle provoquée ou spontanée ? justifier la réponse.
- 1. c. Quelle est l'origine de la particule β émise.
- 2. a. Calculer, en Mev.nucléon⁻¹, l'énergie de liaison par nucléon E₁ du noyau de bismuth utilisé.
- 2. b. Sachant que l'énergie de liaison du noyau de polonium est E_{12} =1539,02 Mev, comparer la stabilité des noyaux de $^{A}_{9}$ Biet de $^{210}_{94}$ Po.
- 3. A l'instant initial t=0, on considère un échantillon de bismuth de masse $m_0 = 1g$, soit m(t) la masse du bismuth restant à la date t (t exprimée en jours).
- a. donner l'expression du nombre de noyaux N existant dans un échantillon de masse m de bismuth en fonction de m, M (masse molaire du bismuth) et N (nombre d'Avogadro).
- b. En appliquant la loi de décroissance radioactive, exprimer m(t) en fonction de m_0 , de la constante de désintégration radioactive λ et de t.
- c. Donner la définition de la demi vie $t_{1/2}$ du bismuth puis calculer sa valeur (en jours) sachant que

$$m(t+10) = \frac{m(t)}{4}$$
 (t : en jours).

- d. Quelle est la masse restante de bismuth à la date t=18 jours.
- e. Définir l'activité d'une substance radioactive. Déterminer l'activité radioactive A_0 de l'échantillon à la date t=0, puis déduire l'activité A à la date t=18 jours (il faut donner A et A_0 en B_0)

On donne pour tout l'exercice : m(Bi) = 210,0535 u

M(Po) = 210,0362 u; $m_n = 1,0086 \text{ u}$; $m_p = 1,0072 \text{ u}$; $1 \text{ u} = 931.5 \text{Mev.C}^{-2}$; 1 jour = 86400 s.

Exercice 3

Le polonium $^{210}_{84}$ Po est radioactif émetteur α .

- 1. Écrire l'équation de la réaction de désintégration α du ²¹⁰₈₄Po sachant qu'il conduit à un isotope du plomb Pb.
- 2. Calculer, en Mey, l'énergie E libérée par cette réaction nucléaire.
- 3. En admettant que l'énergie E libérée est répartie entre la particule α et le noyau de plomb sous forme d'énergie cinétique et que le rapport des énergies cinétiques de α et de Pb est égal à l'inverse du rapport de leurs masses

$$\left(\frac{\mathsf{E}_{\mathsf{C}_{\alpha}}}{\mathsf{E}_{\mathsf{C}_{\mathsf{D}}}} = \frac{\mathsf{m}_{\mathsf{Pb}}}{\mathsf{m}_{\alpha}} \right).$$

Calculer en Mev l'énergie cinétique de la particule α émise et celle Ec_{Pb} du noyau de plomb, puis déduire la vitesse v_{α} de la particule α .

- 4. En réalité, la particule α émise possède une énergie cinétique E'c $_{\alpha}$ tel que E'c $_{\alpha}$ < Ec $_{\alpha}$.
- a. Expliquer brièvement cette différence.
- b. Sachant que l'énergie du photon γ émis est W γ =0,918 Mev, déduire la valeur de E'c $_{\alpha}$.

On donne:

 $M(Po) = 210,\!0362~u~;~M(Pb)206,\!0295~u~;~m_{\alpha}\!\!=4,\!0015u~;~1u=1,\!66.10^{-27}~kg=931,\!5~Mev.~C^{-2}~1 Mev=1,\!6.10^{-13} J~;$