#### **EXERCICE 1**

Les vents créent dans les hautes mers des vagues qui se propagent vers les cotes. Cet exercices a pour objectif l'étude le mouvement de ces vagues.

On considère que les vagues qui se propagent à la surface de la mer sont des ondes sinusoïdales de période T = 7 s.

1- L'onde étudiée est-elle transversale ou longitudinale ? justifier votre réponse .

2- Calculer la célérité de cette onde sachant que la distance entre deux crêtes successives est d = 70 m.

3- La figure 1 représente la coupe longitudinale de l'aspect de la surface de la mer à un instant t. On néglige la dispersion, et considère S source de l'onde et M le front d'onde distant de S de la

M 3-1- Écrire en se basant sue la figure 1, l'expression du retard du point M par rapport à la source S en fonction de la longueur d'onde  $\lambda$ . Calculer la valeur  $\tau$ .

3-2- Donner en justifiant le sens du mouvement de M au moment où l'onde l'atteint.

Les ondes arrivent sur une ouvertures de largeur a = 60 m se trouvant entre deux quais d'un port (figure 2).

Recopier la figure 2, et représenter après leur passage à travers l'ouverture ; et donner le nom du phénomène observé.

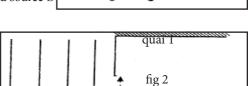
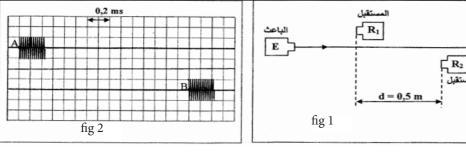



fig 1


### **EXERCICE 2**

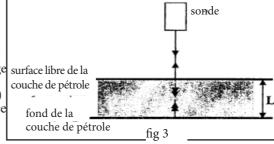
La prospection par échographie qui utilise les ondes ultra sonores est l'une des méthodes utilisées pour déterminer l'épaisseur des couches souterraines

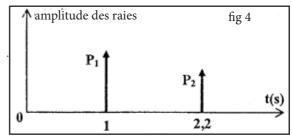
L'exercice a pour but de déterminer la célérité des ondes ultra sonores dans l'air et l'épaisseur d'une couche souterraine de pétrole .

#### 1- Détermination de la célérité des ondes ultra sonores dans l'air :

On met sur une même ligne droite un émetteur d'ondes sonores E et deux récepteurs R<sub>1</sub> et R<sub>2</sub> séparés par la distance d = 0,5 m. On visualise sur un oscilloscope à travers les entrée Y<sub>1</sub> et Y<sub>2</sub> les deux signaux reçus par R<sub>1</sub> et R<sub>2</sub> et on obtient l'oscillogramme représenté sur la figure 2. A représente le début du signal reçu par R<sub>1</sub> et B le début du signal reçu par R<sub>2</sub>.




- 1-1- En se basant sur la figure 2, déterminer le retard temporel τ entre les signaux reçu par R<sub>1</sub> et R<sub>2</sub>.
- 1-2- Déterminer Vair la célérité des ondes ultra sonores dans l'air.


1-3- Écrire l'expression de l'élongation y du point B à l'instant t en fonction de l'élongation du point A

2- Détermination de l'épaisseur d'une couche souterraine de pétrole : Pour déterminer l'épaisseur L d'une couche souterraine de pétrole, un des ingénieur a utilisé une sonde de prospection par échographie. La sonde émet à l'instant  $t_0 = 0$  un signal ultra sonore de courte durée dans la direction perpendiculaire à la surface libre de la couche de pétrole. Une partie de ce signal est réfléchie par la surface libre, tandis que la deuxième partie se propage dans la couche pour subir une deuxième réflexion sur le fond de la couche et revenir vers la sonde en se transformant en un signal de courte durée aussi .(fig 3) La sonde détecte a l'instant t<sub>1</sub> la raie P<sub>1</sub> qui correspond à l'onde réfléchie sur la surface de la couche de pétrole, et a l'instant t<sub>2</sub> la raie P<sub>2</sub> qui correspond à l'onde réfléchie sur

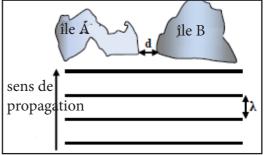
le fond de la couche de pétrole. La figure 4 représente le diagramme des deux raies correspondant aux deux ondes réfléchies

Déterminer l'épaisseur L de la couche de pétrole sachent que la célérité des ondes ultra sonore dans le pétrole brute est v = 1,3 km.s<sup>-1</sup>





#### **EXERCICE 3**

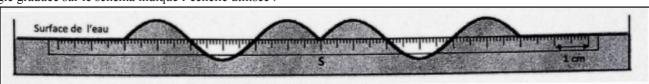

Les tremblements de terre dont l'épicentre se trouve dans la mer provoquent souvent le phénomène connu sous le nom de tsunami Le tsunami est sous formes d'ondes mécaniques qui se propage à la surface des océans pour arriver aux cotes avec une grande énergie destructrice.

On modélise le tsunami par des ondes mécaniques progressives périodiques qui se propagent à la célérité v qui varie selon la profondeur h de l'océan suivant la relation  $v = \sqrt{g}h$  dans le cas des faibles profondeur par rapport à la longueur d'onde  $\lambda$  ( $\lambda >> h$ ) g l'intensité de la pesanteur.

**Données**:  $g = 10 \text{ N.kg}^{-1}$ .

On étudie la propagation de l'onde de tsunami dans une partie de l'océan de profondeur constante h = 6000 m.

- 1- Expliquer que les ondes qui se propage à la surface de l'océan.
- 2- Calculer la célérité des ondes dans cette partie de l'océan.
- 3- Sachant que la durée qui sépare le passage de deux crêtes consécutives en un point est T=18~min, calculer la longueur d'onde  $\lambda$ .
- 4- Dans le cas ( $\lambda >> h$ ), la fréquence des ondes du tsunami restent constantes pendant leur propagation vers les cotes, comment varie la célérité de ces ondes lorsqu'elles approchent des cotes. Justifier votre réponse.
- 5- Le tsunami passe près de deux îles A et B séparées par un détroit de largeur d = 100 km. On suppose que la profondeur près des îles resta constante est que la longueur d'ondes des odes du tsunami est  $\lambda = 120 \text{ km}$ .
- 5-1- Est ce que la diffraction des ondes se produit lorsqu'elles franchirons le détroit ? justifier votre réponse .
- 5-2- Dans le cas de l'affirmative :
- a) Donner en justifiant votre réponse la longueur d'onde de l'onde diffracté .
- b) Calculer l'écart angulaire  $\theta$ .




#### **EXERCICE** 4

Recopier le numéro de la question et écrire à côté , parmi les quatre réponse proposées , la réponse juste sans justification ni explication .

- Propagation d'une onde à la surface de l'eau :

On crée , à l'instant t = O , en un point S de la surface de l'eau , une onde mécanique progressive sinusoïdale de fréquence N=50Hz . La figure ci-dessous représente une coupe verticale de la surface de l'eau à un instant t . La règle graduée sur le schéma indique l'échelle utilisée .



- 1- La longueur d'onde est : (0,5pt)
- $\lambda = 0.2 \text{ cm}$
- $\blacksquare \lambda = 4 \text{ cm}$
- $\lambda = 5 \text{ cm}$
- $\lambda = 6 \text{ cm}$
- 2- La vitesse de propagation de l'onde à la surface de l'eau est : (0,5pt)
- $V = 2 \text{ m.s}^{-1}$
- $\blacksquare$  V = 200 m.s<sup>-1</sup>
- $V = 3 \text{ m.s}^{-1}$
- $V = 8.10^{-4} \text{ m.s}^{-1}$
- 3- L'instant t, où la coupe de la surface de l'eau est représentée, a pour valeur : (0,75pt)
- $\blacksquare$  t = 8 s
- $\blacksquare t = 0.03 \text{ s}$
- $\blacksquare$  t = 0.3 s
- t = 3 s

4- On considère un point M de la surface de l'eau , éloigné de la source S d'une distance SM = 6 cm . Le point M reprend le meme mouvement que celui de S avec un retard temporel  $\tau$  .

La relation entre l'élongation du point M et celle de la source s'écrit : (0,75pt)

- $\mathbf{v}_{M}(t) = \mathbf{v}_{S}(t 0.3)$
- $\mathbf{v}_{M}(t) = \mathbf{v}_{S}(t+0.03)$
- $y_M(t) = y_S(t 0.03)$
- $\mathbf{I} y_{M}(t) = y_{S}(t+0.3)$

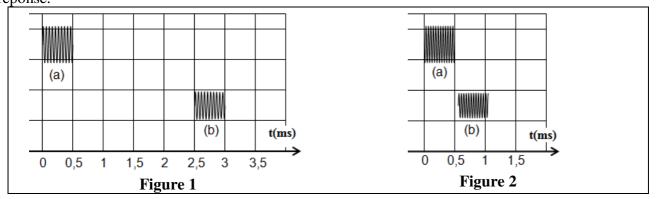
# **EXERCICE** 5

# Le but de l'exercice est de reconnaître quelques propriétés des ondes ultrasonores et des ondes lumineuses à partir de leur propagation dans différents milieux.

#### 1. propriétés des ondes ultrasonores et des ondes lumineuses

Recopier sur votre copie, le numéro de la question, et écrire la lettre correspondante à la seule proposition vraie parmi :

|   | a | les ondes ultrasonores sont des ondes longitudinales.                                                |
|---|---|------------------------------------------------------------------------------------------------------|
|   | b | Le domaine de fréquences de la lumière visible est limité entre 400 nm et 1000 nm.                   |
|   | c | les ondes ultrasonores et les ondes lumineuses ont même célérité de propagation dans le même milieu. |
| l | d | La fréquence des ondes lumineuses varie d'un milieu à un autre.                                      |


#### 2. Propagation des ondes ultrasonores

On place en une même position, un émetteur E et un récepteur R des ondes ultrasonores, à la distance  $d = 42.5 \, \mathrm{cm} \, \mathrm{d}^2$ 'un obstacle. Les ondes ultrasonores qui se propagent à partir de E, se réfléchissent sur l'obstacle puis sont recues par R.

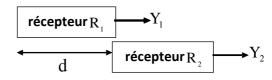
Un système d'acquisition informatique permet de visualiser l'onde émise (a) et l'onde reçue(b). La figure (1) donne l'oscillogramme obtenu.

**2.1.** Déterminer la valeur du retard temporel  $\tau$  entre les ondes (a)et(b).

- 2.2. Vérifier que la valeur de la célérité de propagation dans l'air est v<sub>air</sub>=340 m.s<sup>-1</sup>.
- 2.3. On répète l'expérience en utilisant le même dispositif, et l'eau comme milieu de propagation. On obtient avec le même système d'acquisition informatique l'oscillogramme représenté sur la figure (2). Dans quel milieu (air/eau), la propagation des ondes ultrasonores est plus rapide ? Justifier votre réponse.



#### **EXERCICE** 6


# 1-Détermination de la vitesse de propagation d'une onde ultrasonore dans l'air

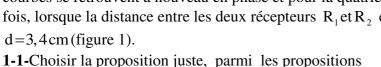
On place un émetteur E d'ondes ultrasonores et deux récepteurs  $R_1$  et  $R_2$  comme l'indique la figure 1.

L'émetteur E envoie une onde ultrasonore progressive sinusoïdale qui se propage dans l'air. Celle-ci est captée par les deux récepteurs R<sub>1</sub> et R<sub>2</sub>.

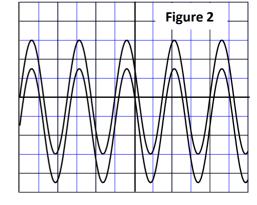


Figure 1




On visualise, à l'oscilloscope,

sur la voie  $Y_1$  le signal capté par  $R_1$  et sur la voie  $Y_2$  le signal capté par  $R_2$ .


Lorsque les deux récepteurs  $R_1$  et  $R_2$  se trouvent à la même distance de l'émetteur E, les deux courbes correspondant aux signaux captés sont en phase (figure 2).

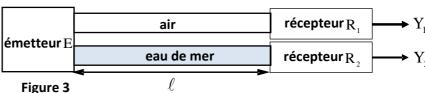
En éloignant  $R_2$  de  $R_1$ , on constate que les deux courbes ne restent plus en phase.

En continuant d'éloigner  $R_2$  de  $R_1$ , on constate que les deux courbes se retrouvent à nouveau en phase et pour la quatrième fois, lorsque la distance entre les deux récepteurs  $R_1$  et  $R_2$  est



- suivantes:
- a-Les ondes ultrasonores sont des ondes électromagnétiques.
  - **b** -Les ondes ultrasonores ne se propagent pas dans le vide .
- c- Le phénomène de diffraction ne peut pas être obtenu par les ondes ultrasonores.




 $S_{H} = 10 \,\mu s. div^{-1}$ 

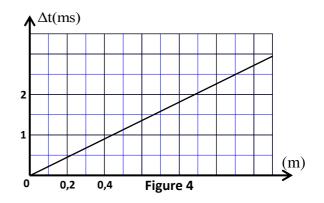
- **d-** Les ondes ultrasonores se propagent dans l'air avec une vitesse égale à la célérité de la lumière.
- 1-2- Déterminer la fréquence N de l'onde ultrasonore étudiée.
- 1-3 Vérifier que la vitesse de propagation de l'onde ultrasonore dans l'air est  $V_a = 340 \,\mathrm{m.s^{-1}}$ .

## 2-Détermination de la vitesse de propagation d'une onde ultrasonore dans l'eau de mer

L'émetteur envoie l'onde ultrasonore précédente dans deux tubes, l'un contenant de l'air l'autre étant

rempli d'eau de mer(figure 3). Le récepteur R<sub>1</sub> capte l'onde qui se propage dans l'air et le récepteur R2 capte l'onde qui




se propage dans l'eau de mer.

Soient  $\Delta t$  le retard temporel de réception de l'onde qui se propage dans l'air par rapport à celle qui se propage dans l'eau de mer et  $\ell$  la distance entre l'émetteur et les deux récepteurs.

En mesurant le retard  $\Delta t$  pour différentes distances  $\ell$  entre l'émetteur et les deux récepteurs (figure 3) , on obtient la courbe de la figure 4 .

**2-1-**Exprimer  $\Delta t$  en fonction de  $\ell$  , $V_a$  et  $V_e$  vitesse de propagation de l'onde dans l'eau de mer.

2-2 -Déterminer la valeur de V<sub>e</sub>.



## **EXERCICE** 7

## 1-Propagation d'une onde ultrasonore

une onde ultrasonore de fréquence N=50Hz se propagent dans une eau calme avec une vitesse  $v_0$ =1500ms<sup>-1</sup>

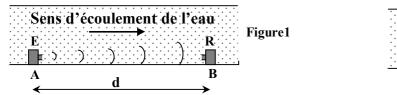
- 1.1- Calculer la longueur d'onde  $\lambda$  de cette onde ultrasonore se propageant dans une eau calme.
- 1.2- La valeur de  $\lambda$  varie-t-elle si cette onde se propage dans l'air ?Justifier la réponse .

## 2- Mesure de la vitesse d'écoulement de l'eau dans une conduite

Une onde ultrasonore se propage à la vitesse v dans une eau qui coule à la vitesse  $v_e$  dans une conduite tel que  $\vec{v} = \vec{v}_0 + \vec{v}_e$  avec  $\vec{v}_0$  vecteur vitesse de propagation de cette onde dans une eau calme.

Pour déterminer la vitesse  $v_e$  d'écoulement de l'eau dans une conduite horizontale , on y place un émetteur E et un récepteur R d'ondes ultrasonores .

L'émetteur E et le récepteur R sont situés sur la même droite horizontale et parallèle à la direction du mouvement de l eau et sont séparés d une distance d=1,0m.

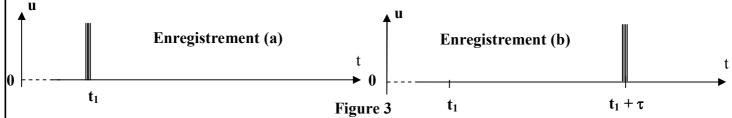

L'émetteur E émet une onde ultrasonore de faible durée qui est reçue par le récepteur R.

Un dispositif adéquat permet d'enregistrer le signal u(t) reçu par le récepteur R.

On enregistre le signal u(t) dans les deux cas suivants :

- 1<sup>er</sup> cas: L'émetteur E est à la position A, et le récepteur R est à la position B (figure 1).
- 2eme cas: L'émetteur E est à la position B, et le récepteur R est à la position A (figure2).

On considère, pour chaque cas ,l'instant de l'émission de l'onde ultrasonore par l'émetteur E comme origine des dates.




Sens d'écoulement de l'eau

R
E
A
d
B

Figure2

La figure 3 représente les deux enregistrements obtenus (a) et (b).



## 3. Propagation des ondes lumineuses

On éclaire une fente verticale de largeur a=0,1 mm, à l'aide d'un laser qui donne une lumière monochromatique de longueur d'onde  $\lambda=632,8$  nm. On observe sur un écran placé à la distance D de la fente, des taches lumineuses mettant en évidence le phénomène de diffraction. La largeur de la tache centrale s'exprime par :  $L=\frac{2\lambda.D}{a}$ . La célérité de la lumière dans le vide (ou l'air) est  $c=3.10^8 \text{m.s}^{-1}$ .

- **3.1.** Déterminer la valeur de la fréquence v de la lumière utilisée.
- **3.2.** On refait l'expérience en utilisant un fil très fin vertical de diamètre  $a_0$ , on obtient une tache centrale de largeur  $L_0$ =2.L. Déterminer la valeur de  $a_0$ .